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Distributed-memory parallel computers are increasingly being used to provide high levels
of performance for scientific applications. Unfortunately, such machines are not very easy to
program. A number of research efforts seek to alleviate this problem by developing compilers
that take over the task of generating communication. The communication overheads and the
extent of parallelism exploited in the resulting target program are determined largely by the
manner in which data is partitioned across different processors of the machine. Most of the
compilers provide no assistance to the programmer in the crucial task of determining a good

data partitioning scheme.

This thesis presents a novel approach, the constraint-based approach, to the problem of
automatic data partitioning for numeric programs. In this approach, the compiler identifies
some desirable requirements on the distribution of various arrays being referenced in each
statement, based on performance considerations. These desirable requirements are referred to
as constraints. For each constraint, the compiler determines a quality measure that captures its
importance with respect to the performance of the program. The quality measure is obtained
through static performance estimation, without actually generating the target data-parallel
program with explicit communication. Each data distribution decision is taken by combining
all the relevant constraints. The compiler attempts to resolve any conflicts between constraints

such that the overall execution time of the parallel program is minimized.
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This approach has been implemented as part of a compiler called PARADIGM, that accepts
Fortran 77 programs, and specifies the partitioning scheme to be used for each array in the
program. We have obtained results on some programs taken from the Linpack and Eispack
libraries, and the Perfect Benchmarks. These results are quite promising, and demonstrate the
feasibility of automatic data partitioning for a significant class of scientific application programs

with regular computations.
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CHAPTER 1

INTRODUCTION

Parallel machines are increasingly being used for providing high levels of performance for nu-
merous applications. The technological advances in VLSI circuits have contributed enormously
to the affordability of such machines. There are commercial products available today that in-
terconnect several thousand powerful microprocessors, and are capable of delivering very high
performance. The importance of such computers is bound to grow as the VLSI circuit speeds
driving uniprocessor performance reach their physical limits. It is widely recognized that the
constant demand for increased computational power can only be met by using massively parallel

computers.

Unfortunately, software support for such systems is still lagging far behind the advances in
hardware. In order to exploit the computational power of such machines, the programmer is
currently forced to pay attention to very low-level implementation details. This leads to low
productivity on the programmer’s part and lack of portability in the resulting programs. Sev-
eral researchers have proposed to tackle this problem for massively parallel computers through
advanced compiler technology. However, the methodology for compile time analysis still re-
mains insufficiently developed in certain critical areas. As a result, the programmer is still
burdened with tedious tasks that could well be automated. This thesis presents our efforts to
automate what many researchers regard as the most challenging step in parallelizing programs
for massively parallel multicomputers, namely the partitioning of data on distributed memory

machines. We shall now explain more precisely this problem and its significance.



1.1 Distributed-Memory Parallel Computers

Multiprocessor systems are commonly classified into the following two categories: shared-
memory and distributed-memory parallel computers. The shared-memory machines provide
all processors with access to a common global memory. Examples of such machines are the
Alliant FX/2800, the Sequent Balance [74], the Cedar [45], and the IBM RP3 [19] machines.
On a distributed-memory machine (multicomputer), each processor has direct access to only
a small part of the total memory, which is distributed among processors. Examples of such
systems are the Connection Machine CM-5 [75], the Intel iPSC/860 [36], and the NCUBE/2
[51].

In the context of building massively parallel systems, distributed-memory machines offer
a tremendous advantage in terms of cost and scalability. Large shared-memory machines are
much more difficult to build. Unfortunately, distributed-memory machines are relatively harder
to program. One major reason for this difficulty is the absence of a single global address space.
As a result, the programmer has to think about how data should be partitioned among various
processes, and manage communication among the processes explicitly. This communication of
data among processes via message passing is usually quite expensive, forcing the programmer to
pay considerable attention to saving communication costs. Since the performance characteristics
of communication relative to computation vary from one machine to another, the programmer
ends up hard-wiring many machine-specific details into the code. Hence, a great deal of effort

is required to port such programs to new machines.

1.2 Emerging Trend in Programming Support

The last few years have seen considerable research activity towards development of compilers
that alleviate the problem of machine dependence and relieve the programmer of the burden
of explicit message-passing. These compilers take a program written in a sequential or shared-
memory parallel language, and based on user-specified partitioning of data, generate the target

parallel program for a multicomputer. For most compilers, this parallel program corresponds to



the SPMD (Single Program Multiple Data) model [39], where all processors execute the same
program, but operate on distinct data items, thus enabling the exploitation of data-parallelism
[28]. These research efforts include the Fortran D compiler (30, 31], and the SUPERB compiler
[81], both accepting Fortran 77 as the base language. The Crystal compiler [15] and the Id
Nouveau compiler [62] are targeted for single assignment languages. Numerous other compilers,
Dataparallel C [59], C* [63], Kali [43, 44], DiNo [64, 65], AL [77], ARF [67], Oxygen [66], Pandore
[4] also produce parallel code for multicomputers, but require explicit parallelism in the source
program. Some of the commercially available compilers for multicomputers are MIMDIZER [69]
and AsSPAR [35]. Many researchers associated with the development of such compilers in the
industry and academia are currently involved in defining High Performance Fortran (HPF), a

new Fortran standard.

Given the data distribution, the basic rule of compilation used by most of the systems de-
scribed above is the owner computes rule [11], according to which it is the processor owning
a data item that has to perform all computations for that item. Any data values required for
the computation that are not available locally have to be obtained via interprocessor commu-
nication. Therefore, with such compilers, one of the most important factors affecting program
performance is the data partitioning scheme. It is the method of data partitioning that guides
the scheduling of computation (and hence determines which of the independent computations
are actually executed on different processors), and determines when interprocessor communi-

cation takes place.

Determining a good partitioning of data across processors is potentially a difficult task that
requires careful examination of numerous considerations. Normally, interprocessor communica-
tion is much more expensive than local computation. Therefore, the data partitioning scheme
should ensure that each processor performs as much of computation as possible using just local
data. Excessive communication among processors can easily offset any gains made by the use
of parallelism. At the same time, the data partitioning scheme should allow the workload to
be distributed evenly among processors, so that full use is made of the parallelism inherent
in the computation. There is often a trade-off between minimizing interprocessor communi-

cation and balancing load on processors, and a good approach must take into account both



the communication and the computational costs governed by the underlying architecture of the

machine.

1.3 Motivation for Automatic Data Partitioning

Most of the compilers for multicomputers currently leave the crucial task of determining the
data partitioning scheme to the programmer, and do not provide the programmer with any
support in this task. While we believe that the efforts to develop techniques for automating the
generation of communication do represent a step in the right direction, we also feel that many
of the fundamental objectives behind developing such compilers remain incomplete as long as
the programmer is forced to take decisions on the distribution of data. Some of the advantages

of making the compiler determine data distribution are:

o Reduced burden on the programmer: The programmer is free to concentrate on the high-
level design of the algorithm. The current state of parallel programming on multicom-
puters is often regarded as comparable to assembly language programming on sequential
machines. Partitioning of data is, in that sense, analogous to register allocation, a task

that should be relegated to the compiler.

e Machine-independence: In general, the best partitioning scheme for a program depends
not only on the program characteristics, but also on numerous machine-specific param-
eters. Thus, a scheme that performs the best on one particular machine may perform
poorly on other machines. Therefore, true portability can only be achieved if the parti-

tioning scheme is not specified as part of the program.

e Relationship with compiler optimizations: A compiler generating the target parallel code
with explicit message-passing applies a number of program transformations, and uses
numerous optimizations that affect the final program performance. A user unfamiliar with
those details may not have a good idea about the implications of some data partitioning

decisions on the performance of the final, compiled code. A compiler would more easily



be able to incorporate that information in the process of choosing the data partitioning

scheme.

Let us now examine some of the arguments in favor of letting the programmer control data

partitioning:

o High-level knowledge: The programmer is likely to have an intuition or high-level knowl-
edge about how various data structures are related to each other, and where parallelism
lies in the program. That should enable the programmer to make reasonably good guesses

about the best data distribution scheme.

o Parameters unknown at compile time: Certain parameters such as array sizes and branch-
ing probabilities may be unknown at compile time, even for programs with “regular” com-
putations. That would make it hard for the compiler to estimate program performance

accurately and come up with good data partitioning decisions.

e Unstructured computations: Programs where the data reference patterns themselves are
quite irregular would introduce inaccuracies and make any compile time analysis difficult.

In such cases, the only reasonable option may be to let the programmer distribute data.

We believe that irregular computations, where the compiler is unable to gather precise
information regarding dependences and data referencing behavior, do represent cases where the
compiler is unlikely to come up with good partitioning schemes. However, for a significant class
of regular numeric computations (most compilers described in the previous section are anyway
expected to work well only on such applications), a compiler should be able to handle this
problem well. We believe that for such computations, whatever intuition a good programmer
has about the data structures, does get reflected in the data referencing patterns that can be
analyzed by the compiler. Regarding the parameters that are unknown at compile-time, we
feel that it is better to enhance the capabilities of compiler through techniques like profiling,
symbolic analysis, and through user assertions about those parameters, rather than burdening

the user with the more tedious and error-prone task of data partitioning.



1.4 Research Goals

Our primary goal has been to develop a methodology for automatic data partitioning, where
given a sequential or a shared-memory parallel program, the compiler determines how its data
should be distributed on different processors of a multicomputer. The objective is to get the
best performance from the resulting parallel program when it executes on that multicomputer.
Our focus in this research has been on scientific application programs. The only data structures
these programs normally use are arrays that have to be partitioned across processors. Usually,
" the scalar variables are either replicated on all processors, or there are privatized copies kept

on various processors. We shall concern ourselves mainly with the distribution of arrays.

We have identified some requirements that any compiler-driven approach to data partition-
ing must satisfy in order to be successful. These requirements have served as specific goals in

our research:

e Estimation of program performance: Any strategy for automatic data partitioning needs a
mechanism for comparing different alternatives regarding the data partitioning scheme for
a given program. Therefore, the compiler should have the ability to estimate the perfor-
mance of the target parallel program, given just the source program and data distribution
information. The compiler has to estimate (i) the extent to which data-parallelism can
be exploited, and (ii) the cost of interprocessor communication in the target program.
Clearly, this analysis has to be done before the target program is generated. Thus there
has to be a close link between the determination of data partitioning scheme and the

generation of target data-parallel program with interprocessor communication.

o Heuristics to reduce the search space: For any program with a reasonably large number
of arrays, the search space consisting of different partitioning schemes is enormous. In
fact, many simple versions of the problem of data partitioning have been proved to be
NP-complete [50, 48]. Thus, any approach must employ effective heuristics that lead to

the pruning of a considerable part of the search space.



In addition to satisfying these requirements, our research has been guided by the goals of

incorporating the following desirable characteristics into our approach:

e Machine-independence: There is need for a basic methodology that is machine-independent.
It should then be possible to simply incorporate machine-specific details, and obtain an

automatic data partitioning system for a given machine.

o Intermediate choice points in the ertent of automation: By design, a data partitioning
system should allow a range of possibilities between the two extreme positions of com-
pletely automatic and completely user-specified partitioning. Thus for regular computa-
tions where the compiler can gather sufficient information about the program, the system
should be able to perform the task automatically. For other programs, the system should
be able to work with directives from the programmer giving partial details on the method
of partitioning. For instance, the programmer may specify a certain alignment between
two arrays through a directive [29], and the compiler should be able to figure out the

remaining details which the programmer does not want to worry about.

With these goals in mind, we have developed an automatic data partitioning system for
multicomputers [23, 25]. Our system has been built on top of the Parafrase-2 compiler [57],
which is used to provide vital information about the program, such as the parse tree structure,
the data dependences, and the control-low information. Qur system, in conjunction with a
small machine-dependent module that provides the cost model for the target machine, can
be used on almost any distributed-memory machine. To allow validation of the underlying
concepts, a version has been developed for the Intel iPSC/2 hypercube [5]. The system accepts
Fortran 77 programs, and outputs a description of the partitioning scheme for each array used
in the program. Our system also accepts Fortran programs in which the programmer explicitly

marks the parallelizable loops as doall loops.

Clearly, any automatic data partitioning system has to be integrated with a compiler gen-
erating the target program with explicit communication. As we observed earlier, the data
partitioning system has to estimate the performance corresponding to the target parallel pro-

gram (though, without actually generating that program) [24]. Therefore, it needs to know



the methodology that the compiler would finally use to generate the program with message
passing. We approached the problem from the point of view of performance estimation. In the
process, we identified techniques that can be used by a compiler to generate communication in
a better manner {26]. These ideas have led to the evolution of our system into a complete com-
piler for multicomputers, now being developed by our research group. This compiler is called
PARADIGM (PARAllelizing compiler for DIstributed-memory General-purpose Multicomput-
ers). In our description, we shall concentrate on just the data partitioning aspects. Throughout
the rest of this thesis, we shall refer to ou;' automatic data partitioning system as “PARADIGM”,
or simply, “the compiler”.

The remainder of this thesis is organized as follows. Chapter 2 describes our approach to
the problem of automatic data partitioning, and gives an overview of the PARADIGM system.
It also discusses related work in this area, and offers comparisons. Chapters 3 and 4 describe
the methodology of estimating the performance of the target program, given the source pro-
gram and data partitioning information. For reasons that shall be explained in Chapter 2,
the performance estimation tool has been organized in the form of two separate modules, one
handling the computational part, and the other dealing with communication. Chapter 3 de-
scribes the methodology for estimating the computational costs, while Chapter 4 describes the
estimation of communication costs. Chapter 5 describes how decisions are taken on different
aspects of the data partitioning scheme, in different passes of PARADIGM. Chapter 6 presents
the results obtained by PARADIGM on some real Fortran codes taken from the Linpack and
Eispack libraries, and the Perfect Benchmarks [17]. Finally, Chapter 7 presents conclusions,

and discusses directions for future work in this area.



CHAPTER 2

AUTOMATIC DATA PARTITIONING

In this chapter, we describe our approach to the problem of automatic data partitioning on
multicomputers. We refer to it as the constraint-based approach {23]. In this approach, the
compiler analyzes each statement in every loop of the program, and based on performance
considerations, identifies some desirable requirements on the distribution of various arrays being
referenced in that statement. These desirable requirements are referred to as constraints. There
is a quality measure associated with each constraint that captures its importance with respect
to the performance of the program. Finally, the compiler tries to combine constraints for
each array in a consistent manner so that the overall execution time of the parallel program
is minimized. Before explaining what these constraints are, we first need to describe how the
arrays may be distributed on different processors of the machine, and how those distributions

are specified.

2.1 Data Distribution

The abstract target machine we assume is a D-dimensional mesh (D is the maximum dimen-
sionality of any array used in the program) of Ny x N2 x ... x Np processors. The use of
a virtual topology allows our approach to be developed in a machine-independent manner, as
long as that topology is supported by the actual target machine. The mesh topology can, in

fact, be easily embedded on most distributed memory machines. A processor in the mesh is



represented by the tuple (p1,p2,...,pp),0 < px S Ny —1for 1 <k < D. The correspondence
between a tuple (p1,p2,...,pp) and a processor number in the range 0 to N — 1 is established
by the scheme which embeds the virtual processor mesh on the real target machine. To make
the notation describing replication of data simpler, we extend the representation of the proces-
sor tuple in the following manner. A processor tuple with an X appearing in the ith position
denotes all processors along the ith mesh dimension. Thus for a 2 x 2 mesh of processors, the
tuple (0, X) represents the processors (0,0) and (0,1), while the tuple (X, X) represents all the

four processors.

The scalar variables and small arrays used in the program are assumed to be either repli-
cated, or privatized on all processors. For other arrays, we use a separate distribution function
with each dimension to indicate how that array is distributed across processors. We refer to the
kth dimension of an array A as Ax. Each array dimension A is mapped to a unique dimension
map(Ax), 1 < map(Ax) < D, of the processor mesh. If Npg5(4,), the number of processors
along that mesh dimension is one, the array dimension Aj is said to be sequentialized. The
sequentialization of an array dimension implies that all elements whose subscripts differ only
in that dimension are allocated to the same processor. The distribution function takes as its
arguments a dimension Ax and a subscript value i. It returns the component map(Ax) of the
tuple representing the processor which owns the element A[—,—,...,¢,...—], where -’ denotes
an arbitrary value, and i is the subscript appearing in the kth dimension. The array dimen-
sion A; may either be partitioned or replicated on the corresponding mesh dimension. The
distribution function is of the form

L—F,ir“"c”’J[modN aniAa)] if A is partitioned
i) = > map(Ax) (2.1)

X if Ay is replicated
where the square parentheses surrounding modNp,p(4,) indicate that the appearance of this
part in the expression is optional. At a higher level, the given formulation of the distribution
function can be thought of as specifying the following parameters: (1) whether the array di-
mension is partitioned across processors or replicated, (2) method of partitioning — blocked or

cyclic, (3) the mesh dimension to which the kth array dimension is mapped, (4) the block size
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of distribution, i.e., the number of etements residing together as a block on a processor, and (5)

the displacement applied to the subscript value for mapping.

Examples of some data distribution schemes possible for a 16 x 16 array on a 4-processor
machine are shown in Figure 2.1. The numbers shown in the figure indicate the processor(s)
to which that part of the array is allocated. The machine is considered to be an Ny x Nj
mesh, and the processor number corresponding to the tuple (p1,p2) is given by py * Nz + p2.
The distribution functions corresponding to the different figures are given below. The array

subscripts are assumed to start with the value 1, as in Fortran.

a) Ni=4,N;=1: f(A1,d) = 2], f(A2,7)=0

b) M =1,Ny=4:  f(A1,i)=0, f(A2,5) = | 1F]

) M=2,N=2:  f(4,)=[F] f(A2,5) = |55

d)y Ny=1,Ny=4: f(A1,i) =0, f(Az,5) = (j — 1) mod 4
e) Ny =2,N;=2: f(A1,9) = |352] mod 2, f(A42,j) = |15*] mod 2
fy N =2 N;=2: f(Ar,1) = [T, f(A2,5) =X

The last example illustrates how our notation allows specification of partial replication of
data, i.e., replication of an array dimension along a specific dimension of the processor mesh.
An array is replicated completely on all the processors if the distribution function for each of

its dimensions takes the value X.

If the dimensionality (D) of the processor topology is greater than the dimensionality (d)
of an array, we need D — d more distribution functions in order to completely specify the
processor(s) owning a given element of the array. These functions provide the remaining D —d
numbers of the processor tuple. These “functions” are restricted to constant values, or the

value X if the array is to be replicated along the corresponding mesh dimension.
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Figure 2.1: Different data partitions for a 16 * 16 array



2.2 Constraint-Based Approach

As mentioned earlier, our approach is based on the analysis of array references in various
statements inside every loop in the program. This analysis identifies some desirable restrictions
on the distribution of those arrays, that are referred to as constraints on data distribution. Our
use of this term differs slightly from its common usage in the sense that constraints on data
distribution represent requirements that should be met, and not requirements that necessarily

have to be met.

2.2.1 Significance of Constraints

For each statement assigning values to an array A in a parallelizable loop, and using the
values of an array B, there are two kinds of constraints: parallelization constraints on the
distribution of A, and communication constraints on the relationship between distributions of
A and B (this includes the special case when the 1hs array A is the same as the rhs array
B). The parallelization constraints try to ensure even distribution of the array elements being
assigned values in that loop, and on as many processors as possible. The objective there is
to obtain good load balance, and hence performance gains through exploitation of parallelism.
The communication constraints try to ensure that the data elements being read in a statement
reside on the same processor as the one that owns the data element being written into. That
would make the values required for a piece of computation available locally on the processor

carrying out that computation, thus eliminating the need for interprocessor communication.

We showed in the previous section how the distribution of an array on the target machine
(with a virtual mesh topology) is specified through separate distribution functions for each of
the array dimensions. It was shown that each distribution function is characterized by distinct
parameters such as the mesh dimension to which that array dimension is mapped, the method
of partitioning, the number of processors, etc. A single constraint on the distribution of an
array dimension usually specifies the value of only one of these parameters, and a constraint on

the relationship between two array dimensions specifies how the values of a given parameter for
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do 20 mi = 1, morb
zrsig(mi, mq) = zrsig(mi, mq) + val * v(mp, mi)
zrsig(mi, mp) = zrsig(mi, mp) + val * v(mgq, mi)
20 continue

do 70 mqg = 1, ngq

do 60 mj = 1,mq
60 zij(mj) = zij(mj) + val x v(mq, mj)
70 continue

Figure 2.2: Program segment from trfd

their respective distribution functions should be related. For instance, an alignment constraint
between two array dimensions specifies that the two dimensions should be mapped to the same

mesh dimension.

Intuitively, the notion of constraints provides an abstraction of the significance of each
statement with respect to data distribution. The distribution of each array involves taking
decisions regarding a number of parameters, and the constraints corresponding to a statement
specify requirements on only the parameters that affect the performance of the given statement.
This often helps combine requirements from different parts of the program. Consider the
program segment shown in Figure 2.2, taken from a real life scientific application code, the

trfd program from the Perfect Benchmarks.

The statements in the first loop lead to the following communication constraints — alignment
of zrsiq, with v,, identical distributions for zrsig; and v,, and the sequentialization of zrsig
and v;. The satisfaction of these constraints would ensure communication-free execution of
those statements in the entire loop. Similarly, the statement in the second loop advocates
alignment and identical distributions of zij; and vy, and the sequentialization of v;. The
parallelization constraint for that statement suggests cyclic distribution of zij;, in order to
obtain better load balance (since the extent to which zij; is accessed in the inner loop varies in

different iterations of the outer loop). All of these requirements are consistent with each other.
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Together, they imply a column-cyclic distribution for v, a row-cyclic distribution for zrsiq, and
a cyclic distribution for zij (the constraint on cyclic distribution gets passed on from zij; to
ve, and from vy to zrsiqy). Thus, the use of constraints facilitates incorporating requirements
from different parts of the program, when those requirements pertain to different aspects of the

data partitioning scheme.

2.2.2 Conflicts among Constraints

The example shown above corresponded to an “easy” case for data partitioning. In general,
different parts of the program may impose conflicting requirements on the distribution of various
arrays, through constraints inconsistent with each other. In order to resolve those conflicts, the
compiler records a measure of quality with each constraint. For the boolean constraints, which
are finally either satisfied or not satisfied by the data distribution scheme (for example, an
alignment constraint between two array dimensions), the quality measure is an estimate of the
penalty paid in execution time if that constraint is not honored. For other constraints governing
the value to be used for a data distribution parameter, such as the number of processors, the
quality measure is an estimate of the parallel execution time as a function of that parameter.
Depending on whether a constraint affects just the amount of parallelism exploited or the
interprocessor communication requirement, or both, the expression for its quality measure has

terms for the computation time, the communication time, or both.

One may oberve that determination of the quality measures of various constraints requires
special features in the performance estimation methodology. There is a need to isolate the
contribution of (all instances of) a single statement to the total program execution time. In
fact, there is a further need to characterize the times spent on communication of values for
each individual array referenced in a statement. For this reason, we keep separate accounts
of the times spent in computation and communication for each statement associated with the

recording of constraints.

One problem in determining the quality measures of constraints is that their value may

depend on certain parameters of the final distribution scheme that are not known beforehand.
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The problem is one of circularity: these estimates are needed in the first place to help determine
a good distribution scheme, and unless the distribution scheme is known, it is difficult to come
up with good estimates to guide the selection. We shall first present an overview of the design

of PARADIGM, and then explain how this problem is resolved in the system.

2.2.3 Overview of the System

The structure of the overall system for automatic data distribution is shown in Figure 2.3.
PARADIGM has been developed as an extension to the Parafrase-2 system [57]. Like the base
system, it is organized in the form of passes through the program. Parafrase-2 builds an internal
representation for the program, providing information such as the parse tree structure, the
data dependences, and the control flow information. It also performs constant propagation and
induction variable recognition. The internal program representation kept by Parafrase-2 has
been extended to incorporate additional information that PARADIGM needs about the program,
such as the count of operations in assignment statements, and the canonical representations
of subscript expressions. This additional information is recorded in the scc and the setup
passes, which are the first two passes to be invoked in PARADIGM following those of Parafrase-
2. Further details are given along with our discussion of the methodology for estimation of

computational costs in Chapter 3, and of communication costs in Chapter 4.

The decisions on data distribution scheme are taken in a number of distinct passes through
the program. Each pass takes decisions on a single parameter for the distribution functions
of all the arrays. The align pass maps each array dimension to a processor-mesh dimension,
on the basis of the alignment constraints among various array dimensions. The block-cyclic
pass determines for each array dimension, whether it should be distributed in a blocked or
cyclic manner. The block-size pass determines the block size to be used for each dimension
distributed in a cyclic manner. The num-procs pass determines the number of processors in

each of the processor-mesh dimensions to which various array dimensions are mapped.

Each of the above passes determining a distribution parameter is organized in the form of

three modules. The detector module detects opportunities for recording a constraint on the
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Figure 2.3: Overview of automatic data partitioning in PARADIGM

given distribution parameter for any array. The driver module invokes the communication
cost estimator and/or the computational cost estimator to obtain the quality measure of that
constraint. For example, to obtain the quality measure of an alignment constraint, the com-
munication cost estimator is invoked twice — once to return estimates when the given array
dimensions are properly aligned, and the next time to give cost estimates when those dimen-
sions are not aligned. The quality measure recorded is the difference between these costs. Once
all the constraints affecting the given distribution parameter and their quality measures have
been recorded, the solver determines the value of that parameter, by solving the corresponding

optimization problem. The details regarding each of the passes are presented in Chapter 5.

Let us now consider the problem of circularity in obtaining the measures through perfor-

mance estimation. This problem is dealt with through a combination of two techniques. During
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the early stages, the compiler uses “reasonable” values of parameters not known at that point,
based on some simplifying assumptions. For instance, while determining the quality measures
of alignment constraints, the compiler assumes that each array dimension is distributed in a
blocked manner, and on an equal number of processors. In successive passes, as decisions are
taken on different aspects of the partitioning scheme, the amount of information available to
the compiler increases, thus enabling more accurate performance estimation to guide the choice
of the remaining distribution parameters. Note that the number of processors in each mesh
dimension is not determined until the very end. Therefore, another technique we use is to ex-
press all performance estimates in a symbolic form, with the number of processors in different
mesh dimensions appearing as parameters in those expressions. This eliminates the need for
repeated program analysis to obtain different performance estimates, when the only parameters

changing are the number of processors in various mesh dimensions.

2.3 Related Work

Due to the close relationship between the problem of automatic data partitioning and of gen-
erating data-parallel programs, our work is related and relevant to numerous research projects
on compiling for distributed memory machines. We have described some of that work in the
previous chapter. In this section, we only examine the research efforts that have addressed the
problem of automatically determining a data partitioning scheme, or of providing help to the

user in this task.

Mace worked on the problem of selecting memory storage patterns (shapes) [50] for vector
machine environments, particularly those using memory interleaving. Using a graph-theoretic
framework for computation, she shows that the problem of finding optimal data storage patterns
for parallel processing, even for 1-D and 2-D arrays, is NP-complete. Those results are valid

for distributed memory machines as well.

Ramanujan and Sadayappan have worked on deriving data partitions for a restricted class of

programs [60]. They present a matrix notation to describe array accesses in parallel loops and
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derive conditions for communication-free partitioning of arrays [61]. Their approach is mainly
directed towards individual loops, and they do not discuss applying these ideas to complete

programs, which might have conflicting requirements on the partitioning scheme.

Hudak and Abraham [34], and Socha [71] present data partitioning techniques for sequen-
tially iterated parallel loops, based on the access patterns inside those loops. Their work allows
for more general data distributions than those described by us, but it may be difficult for most
compilers to generate efficient communication for such complex distributions. These approaches
have the limitation of restricted applicability, they apply only to programs that may be modeled

as a single, multiply nested loop structure.

Tseng describes the AL compiler [77] that performs data mapping once the programmer
chooses one dimension of each array that is to be distributed on the linear array of processors
in the WARP machine. The techniques used in the AL compiler need to be extended signifi-
cantly to allow the distribution of multiple dimensions, and to recognize automatically which

dimensions to distribute.

Knobe, Lukas, and Steele have developed techniques for automatic data layout on SIMD
machines [41, 42]. They use the concept of preferences between data references to guide the
layout process, which is similar in spirit to our use of constraints to guide the choice of data
distribution parameters. A significant feature unique to our approach is the analysis carried
out to record the quality measure with each constraint, which leads to a much more precise

characterization of the “weight” to be attached to each constraint.

Balasundaram, Fox, Kennedy, and Kremer discuss an interactive tool that provides assis-
tance to the user in determining the data distribution [6, 40]. The key element in their tool is
a performance estimation module, which is used to evaluate various alternatives regarding the
distribution scheme. They use the method of “training sets” to help estimate the performance
of a program with message passing [7]. Those techniques need to be extended to allow perfor-
mance estimation, given just the source program and data partitioning information, without

actually translating it to one with explicit message passing.
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Our research has been influenced by the work of Li and Chen on the Crystal compiler [48,47],
and theirs is probably the most closely related to our work. In [48] they discuss the problem
of alignment between array dimensions, show it to be NP-complete, and present a heuristic
algorithm for that problem. However, the measures they use to capture the importance of
any given alignment are somewhat simplistic. PARADIGM obtains more appropriate measures
by estimating the penalty in communication costs if the array dimensions are not aligned the
proper way. Li and Chen also describe how explicit communication can be synthesized and
communication costs estimated by pattern-matching on data references in the source program
[47]. We have introduced the notion of synchronous properties between array references that

enables our compiler to perform more sophisticated analysis.

A feature common to the approaches proposed by Kremer and Kennedy [40], and Li and
Chen [47] is that the data partitioning decisions (except for the decisions on alignment) are
based on comparisons between almost all possible alternatives regarding those schemes. An
advantage of this approach is that the performance estimation can now be done in a more
accurate manner. However, as the problem size is increased, the number of possibilities to
consider becomes too large, unless additional heuristics are incorporated to prune the search

space.

Chapman, Herbeck and Zima describe the features of a knowledge-based interactive tool
[12] to provide support for automatic data distribution. Their tool relies on program analysis
and pattern-matching techniques, in conjunction with the use of a knowledge base to guide the
search for a good dafa. partitioning scheme. This tool is being developed as part of the second

generation of the SUPERB compiler [81].

Wholey describes an automatic data mapping system for the ALEXI language [78]. The
problem of performance estimation is simpler compared to that for Fortran 77 programs, since
the ALEXI programs already have the calls to primitives to carry out high-level communication
and parallel array operations. The ALEXI compiler uses a detailed cost model for performance
estimation to guide data partitioning decisions. The compiler does not deal with the problem

of alignment conflicts between arrays.
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O’Boyle and Hedayat describe application of transformations in a Sisal compiler to achieve
better data alignment and load balancing [52, 53, 54]. One of the main contributions of their
work is in providing a linear algebraic framework to apply those transformations. However,
they do not discuss resolving conflicts between alignment requirements of different parts of
the program. While their framework is quite elegant, we believe it is not very well-suited to
modeling communication costs accurately, since it ignores many relevant factors, like the nature

of communication primitives.
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CHAPTER 3

ESTIMATION OF COMPUTATIONAL COSTS

This chapter describes the methodology used to estimate the computational part of the parallel
program execution time. By computational part, we simply mean the execution time of the
parallel program if all communications take zero time. These estimates help determine the
quality measures of parallelization constraints on the distribution of various array dimensions.
Specifically, those measures are used to guide the choice of blocked or cyclic distributions, and

the number of processors on which the array dimensions are distributed.

The basic approach we use for performance estimation of programs is to determine the
contribution of each statement to the overall program execution time. Thus, to estimate the
sequential execution time for a program, the compiler would estimate the following items for
each statement in the program: (i) time taken to carry out the computation of a single instance
of that statement, and (ii) count of the number of times that statement is executed. Extending
this analysis to estimate the paralle] execution time requires an understanding of how the

compilers for multicomputers expose parallelism in programs.

The methodology used by compilers to generate parallel code for multicomputers relies
mainly on the exploitation of data-parallelism. Logically, the unit of computation that is
scheduled on a processor is a single statement (as opposed to an entire iteration, typical in
the case of control-parallelism). As a consequence of the owner computes rule, computations
for different instances of a statement (corresponding to different iterations of a loop) are parti-

tioned according to how the lhs data elements (the data elements being assigned values) are
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distributed. The overall computation time is determined by when the last processor finishes its
share of computation. If there is no flow dependence between different instances of the given
statement, the compiler simply has to determine the time taken by the processor with maximum
load. If there are flow dependences, the compiler has to account for the synchronization delays
as well. For example, consider a flow dependence from S(i) to a later instance § (j),% < j,of the
statement. If S(i) and S(j) are executed by different processors, the compiler has to recognize
that the computation for §(j) will start only after the computation for S(i) is complete. In
addition, there would be a further delay due to communication of the value computed by S(z)
that is used by S(j). However, we keep a separate account for the communication costs. In this
chapter, we describe estimation of only the computational part of the overall execution time.

The next chapter describes our methodology for estimating the communication times.

We first present some relevant details of the internal representation kept for a program, and
how the computational costs pertaining to all instances of a given statement are estimated. It
is important to keep in mind that the purpose of the estimation process is not to predict the
actual execution time of the program. The objective is to guide the selection of data partition-
ing scheme by determining the performance implications of choosing some data partitioning

parameters a certain way for a given statement.

3.1 Program Information

This section describes some information regarding the source program recorded by Parafrase-2

and the PARADIGM compiler, and terms that we shall use in later discussions.

Dependence Information The builddep pass in Parafrase-2 builds a data dependence
graph [46] that keeps the information regarding all data dependences in a program. Each
dependence is labeled as a flow, anti, or output dependence. Associated with each dependence
edge representing a dependence from statement S1 to statement S2, both nested in n loops, is a

direction vector (dq,ds,...,d,), where d; € {<,=,>,<,>,#,*} [79]. The direction vector de-
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scribes the direction of dependence for each loop, with dy describing the direction of dependence
for the outermost loop, and successive components of the vector describing directions for the
inner loops. The forward direction “<” implies that the dependence is from an earlier to a later
iteration of the corresponding loop, “=" implies that the dependence does not cross an iteration
boundary, and “>” means that the dependence crosses an iteration boundary backwards. The
other four directions are simply combinations of these three basic directions, and are associated
with imprecision in data dependence tests. In Fortran do loops, a backward direction can occur
only if there is a forward direction in an outer loop. Another way this fact is often expressed
is that every legal direction vector has to be non-negative, where the directions “<”,“=7, and

“>7” are expressed as +1,0 and —1, respectively.

Once the data dependence graph is built, the dotodoall pass in Parafrase-2 determines for
each loop whether it can be parallelized or not. A loop at level k is regarded as sequential if
there is at least one dependence edge between nodes representing statements in that loop that
has a direction vector of (dy,da, . .., d,) satisfying the following properties: (i) di € {<, <, #,*}
(ii) Vi in [1,k — 1],d; & {<,>,#}. These conditions check for the existence of a cross-iteration
dependence that it is not satisfied by the sequentiality of an outer loop. The significance of
ignoring a dependence in the “>” direction at level k lies in the fact that a “>” direction can
occur only when there is a “<” direction occuring at an outer level [79]. The remaining loops

are marked doall in this step.

The information about control dependences was not yet available in our version of Parafrase-
2. Hence for simplicity, the only dependences we have considered in this work are the data
dependences in a program. Control dependences can be handled by converting them to data
dependences [3], or by using a different program representation, the program dependence graph

[20] instead of a data dependence graph.

Strongly Connected Components in Dependence Graph The scc pass in PARADIGM
operates on the data dependence graph built during the builddep pass of Parafrase-2, and
identifies the strongly connected components in the graph [72]. Initially the compiler deter-

mines max-level, the maximum nesting level of any loop in the program. Since the extent
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of parallelism has to be estimated at all loop levels, the compiler determines the strongly con-
nected components at all levels varying from 1 to max-level [2]. We shall briefly describe here
the notion of level-k dependence graph and level-k strongly connected components. The

interested reader is referred to [2] for further details.

Given a dependence graph DG, the corresponding level-k graph DG} is derived as follows.
The nodes included in DG} are those corresponding to statements nested at level k or greater.
An edge from DG between these nodes is included in DG} if and only if the associated direction
vector (dy,da, ..., d,) satisfies the following properties: (i) dx # “>” (ii) Vi in [1,k—1],d; € {<
,>,#}. These conditions lead to any dependence satisfied by the sequentiality of loops outside
level k to be ignored. Thus, DG may be regarded as the graph derived from DG by considering
only the edges at nesting level k or greater. The scc pass in the compiler identifies the strongly
connected components (SCCs) in each such graph DGy “built” for a loop at level k. For each
statement at nesting level m, the compiler records information identifying the SCC it belongs

to at each of the levels 1 through m.

Array References and Computation Times During the setup pass, PARADIGM traverses
the expression tree corresponding to each assignment statement to record a list of all the
variables (both scalar and array variables) referenced in that statement. During this traversal,
the compiler also keeps a count of the number of loads and individual arithmetic operations in
the computation. Given information on the times taken to carry out each of those operations
on the target machine, these counts are now used to record the execution time estimates for
a single instance of each statement. Our machine-specific version of PARADIGM uses simple
timing figures for the Intel iPSC/2 hypercube for this purpose. For each array reference, the

compiler records additional information about each subscript expression, as described below.

Subscript Types PARADIGM analyzes the expression corresponding to each subscript, and

assigns it to one of the following categories:

e constant: if the subscript expression evaluates to a constant at compile time.

25



e single-index: if the subscript expression reduces to the form a * i + 3, where a, 3 are

integer constants and i is a loop index.

¢ multiple-index: if the subscript expression reduces to the form a; iy +az*i2+ ...+
ai * ik + B, k > 2, where ay,...,ar and 3 are integer constants, and iy,...,% are loop

indices.

¢ unknown: this is the default case, and signifies that the compiler has no knowledge of how

the subscript expression varies with different iterations of a loop.

The canonical form of the subscript expression shown above is recorded if the subscript is
of the type constant, single-index or multiple-index. For each subscript, the compiler
also determines the value of a parameter called variation-level, which is the level of the
innermost loop in which that subscript changes its value. For a subscript of the type constant,
it is set to zero. For all other subscript types, the compiler first determines the loop level
corresponding to the innermost loop index that appears in the subscript expression. The
variation-level of a subscript of the type single-index or multiple-index is set to that
value. For a subscript of the type unknown, the compiler also constructs a list of all the variables
appearing in the subscript expression. It examines the nesting levels of all the statements from
which there is a flow dependence to the given statement due to one of the variables in the
list. The minimum of these levels and that of the innermost loop index (if any) appearing in
the subscript expression yields the variation-level of that subscript. This gives the compiler
additional information about the “unknown” subscript, namely, the loops with respect to which

that subscript expression is an invariant.

Based on our experience with some real-life applications, we have found keeping the following
additional informatioﬁ about subscripts to be useful. Consider a subscript expression of the form
oy *t1+...+ ap*1p+ 2z, where z is an expression of the type unknown with a variation-level
smaller than that of the first part, oy * ¢y + ...+ o *i. In such a case, the overall subscript is
regarded as of the type unknown, but the compiler also records the first part of the expression.

That enables the compiler to detect regularity in the variation of subscript for the innermost k
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do j1 =41, fi, %1
;10 J2 = 12, f2, 82
do jm = im, fmsSm
i4(91,!)2,---,g,p) =

Figure 3.1: Assignment statement with array references

loops. Currently, PARADIGM carries out this analysis only for k = 1, i.e., for subscripts of the

form oq * 14, + z.

Iteration Counts and Reaching Probabilities for Statements Consider the statement
S shown in Figure 3.1. The estimates of execution time spent on S depend on the iteration
count of the surrounding loops, and on the branching probabilities of various conditionals in the
program that affect the flow of control to that statement. The loops surrounding the statement
need not form a perfectly nested structure. When the initial value ¢;, the final value f;, and
the stride s; of the loop index for L; are constants, the iteration count of the loop can easily
be determined as m; = |[(fi —4)/si] + 1 if fi > 4, otherwise n; is set to zero. Tawbi and
Feautrier present an algorithm [73] that computes an approximate count of the total number of
iterations when the expressions for 7; and f; are linear functions of the surrounding loop indices.
Their algorithm computes an approximate solution to the problem of counting the number of
integer points in the bounded convex polyhedron corresponding to the loop nest. However, our
methodology for performance estimation requires explicit estimates for the expected value of
each of those loop bounds, particularly for estimating communication costs. These expected
values should be chosen such that the product of the iteration counts computed for each loop
is equal to the total iteration count for the entire loop nest (note that the available algorithms

compute the symbolic form only for the count for the complete loop nest).
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doi=1,n
doj=1¢tn
S
enddo
enddo

Figure 3.2: Variation of inner loop bounds with outer loop index

For a commonly occurring case where only one such inner loop has bounds that are linear
functions of an outer loop index (say, i), the solution is quite straightforward. The compiler
simply replaces each occurrence of i in the expression for loop bound by the ezpected value of ¢,
which is set to the arithmetic mean of the lower and upper bounds of the corresponding loop.
For example, in the following loop, the expected value of i is set to (n + 1)/2. In more complex
cases, and when the expressions for loop bounds involve other variables having values unknown
at compile-time, the compiler queries the user for the expected values of loop bounds. A more

sophisticated system can obtain these values through profiling [68].

In general, due to the presence of conditionals, the number of times a statement is executed
during the program would be less than or equal to the product of iteration counts of all the
loops surrounding it. For each statement S surrounded by m loops, m > 1, we define a quantity
called its reaching probability, that models the effect of all conditionals in the program from

which there a control dependence to §. The reaching probability is defined as:
m
p(S) = num(S)/([] m),
=1

where num(S) is the number of times S is executed during the program, and n; denotes the
expected value of the iteration count of loop L;. Probably the best way to determine p(.5) for
each relevant statement S is to use profiling [68]. The current version of PARADIGM follows
a relatively simpler approach where the user supplies these values for any statement having a
reaching probability significantly lower than one. For all other statements, the default value

assumed is one.
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3.2 Computational Cost for a Statement

Consider again the statement shown in Figure 3.1. The first step in the estimation process is to
determine the loops with respect to which computations involving the given statement S can
be executed in parallel. In the next step, the compiler uses data partitioning information to

determine how those computations would be partitioned on processors.

3.2.1 Identification of Loop Level Parallelism

The algorithm in Figure 3.3 determines the innermost loop level Imaz at which the statement
S is involved in a recurrence. The compiler infers that the statement § can be parallelized
with respect to all the loops nested at levels greater than Imaz, and also with respect to all
the loops outside Ljmnqr that are marked doall during the dotodoall pass. (A loop at level
k is referred to as Lg). Thus, for a statement S to be parallelizable with respect to a loop,
the characterization of that loop as a doall at the end of the dotodoall pass is a sufficient,
and not a necessary condition. In general, exploiting parallelism at all these levels requires
transformations like loop distribution and loop interchange, which can be identified using this
algorithm. Any doall loops outside the loop Lims; need to be brought inside through loop
interchange. Whenever the source S’ of a loop-carried dependence and S belong to different
SCCs in the level-l dependence graph DG (see line 7 of the algorithm), if [ takes a higher
value than the eventual value of Imaz, the loop L; should be distributed over the components
corresponding to statements S’ and §. This would enable parallelization of the statement S

with respect to L;, which would not be possible otherwise.

Legality of ignoring output and anti dependences We shall now explain why the com-
piler can safely ignore all output and anti dependences to statement S in the given algorithm.
Consider an output dependence from a statement instance S’(i) to a statement instance S(7).
By the definition of output dependence, 5’(i) and S(j) must write into the same data element.

Hence by the owner computes rule, the same processor must perform the computation of both
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Imaz =0
for each dependence into S do
if ((dependence-type == flow) and (dependence is loop-carried))
S’ = source statement of dependence
determine k = (innermost) loop level at which dependence is carried
for(I=k;l>1;l--)do
if S and S’ belong to same SCC in DG
break
endif
endfor
Imaz = maz(l,Imaxz)
endif
endfor

Figure 3.3: Algorithm to determine loop level parallelism for §

of those statement instances. Therefore, output dependence cannot place any constraints on
the relative execution order of computations assigned to different processors. In other words,
output dependence does not lead to any loss of effective parallelism (beyond that caused by the
owner computes rule). Now consider an anti dependence from §’(¢) to §(j). Such a dependence
implies that $’(i) has to use the value of a data element (say, z) before 5(j) assigns a value
to it. For this dependence to impose an ordering between computations on different proces-
sors, the two statement instances S’(i) and S(j) must be executed by different processors. The
translation process followed by the compiler would cause the processor owning z to send that
value to the processor executing 5'(), and would also ensure that the correct value of z is sent
before S(j) overwrites that value. Hence, regardless of the relative order of execution of 5'(z)
and S(j), the underlying data dependence is honored. Thus there is no ordering constraint

between computations involved in an anti dependence, that take place on different processors.

3.2.2 Contribution of Each Loop to Computational Cost

We now describe how PARADIGM estimates the contribution of all instances of statement S to

the parallel execution time (excluding the time spent on communication). The estimated time
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is given by the following expression:
T(S) = p(8)*(J[Ci(8))*1$) (3.1)
=1

where p(S) is the reaching probability for S, #(S) is the estimated execution time for a single

instance of S, and Ci(S) is the contribution term from the loop L;.

The value of Ci(S) depends on the iteration count n; of the loop L;, and on the extent
to which the statement S is effectively parallelized in different iterations of that loop. The
algorithm to determine the Cy(S) terms proceeds from the innermost loop (I = m) to the

outermost loop (! = 1). Each step is based on the following two cases:

1. If the computations for S are marked sequential with respect to Ly, or if no subscript in the
1hs reference A(gi1,92,---,9p) has a variation-level of [, Ci(S) is set to the iteration
count n;. The first condition represents the lack of available parallelism, while the second
condition represents the entire computation corresponding to n; iterations being mapped

to a single processor.

2. If the computations for S are marked parallelizable with respect to L;, and if there is a
subscript gx with variation-level [, the contribution term Ci(S5) is set to the number
of iterations (for statement §) that the processor with maximum load is assigned. The
expression for that depends on the type of subscript gx. Clearly, the subscript cannot be
of the type constant, since a constant subscript must have a variation-level of zero.

Thus, there are three possibilities regarding the type of subscript:

e single-index : let g; = o * ji + B1, where a; and B, are constants. Let the array
dimension A be distributed on N, processors, with a block size of br. We define
the loop range r; to be fi — 4 + s if fiy > 4, and zero otherwise. Given that Aj
is distributed in a blocked-cyclic manner (of which blocked and completely cyclic
distributions are special cases), the term contributed by the loop L; is given by the

following expression:

C(S) = (lbx/(leal * 30)| * [(leal * 71)/ (N # be) ) +
min(|bx/(laa| * &1)], [((lea] * 1) mod (N % bx))/(lea| * 31)]) (3.2)
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Figure 3.4 illustrates the situation for Ny = 3, and helps explain how we arrive at
this expression. The region P represents the part of the computation that is divided
equally among all processors. The term [(|a|*71)/(Ni*bi)| denotes the number of
complete blocks covered in that region on each processor. The term [bi/(|a1] * 1))
denotes the number of loop iterations that traverse a single block of A% on a processor.
Thus, the product of these two terms (the first additive term in the expression for
Ci(8)) represents the contribution corresponding to the region P. The remaining
part of the computation, marked @, is not divided equally on all processors. If the
extent of this region exceeds the block size of Ax, the additional number of iterations
executed by the most loaded processor is |bx/(|a1]| *31)]. Otherwise, that additional
number is [((Ja1| * r1) mod (N * br))/(|as| * 81)], i.e., the total number of iterations

corresponding to the region Q.

multiple-index: let gp = ay*ji+az*ji41+...+@m—i41*Jjm+B. For the purpose of
analysis, the compiler “freezes” all the loops outside L; that contribute their index
to the subscript expression. Thus, the computations for S are marked sequential
with respect to each of the loops outside L; for which the coefficient of loop index in
the expression for gi is non-zero. The given case now reduces to the previous one,

and the expression for C;(S) is identical to the one shown in Equation 3.2 above.

unknown : the nature of partitioning of computation is unknown at compile time in
this case. Therefore, it is not possible to obtain an accurate estimate for the contribu-
tion term at compile time. The compiler assumes that the load does get distributed,
but with an imbalance, causing the speedup to be reduced by an imbalance-factor of
imb (a parameter that is set to an arbitrary small value greater than one). Clearly,
when communication costs are not considered, the speedup cannot be lower than
one. Thus, the speedup is estimated to be max(/N;/imb, 1), and the estimate of the

term contributed by the loop L, is:

Ci(S) = [(n/max(Ni/imb, 1))]
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al* fl

Figure 3.4: Region of Ay accessed in loop L;

If there are two or more subscripts for which the variation-level is [/, it implies that
the computation “traverses” multiple mesh dimensions in the loop L;. Figure 3.5 shows
an example, where both the mesh dimensions are being traversed in the i-loop. Consider
the terms obtained by applying the above rules individually to each subscript. Each such
term represents the number of iterations in which the computation crosses a processor
boundary along the mesh dimension corresponding to that subscript. In the example
shown, the two terms obtained would be n/2 and n/4. Clearly, the number of iterations
(for statement S) assigned to a single processor is given by the minimum of such terms
(which is n/4 in the given example). Therefore in case of multiple subscripts varying in
the same loop, the contribution term for the loop is determined by taking the minimum

of all the contribution terms obtained for individual subscripts.

In actual practice, the number of processors in various mesh dimensions are not known at
the time of the estimation process. Hence, the expressions for these estimates are recorded
in a symbolic form, with the number of processors in different mesh dimensions appearing as

parameters.
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Figure 3.5: Variation of multiple subscripts in the same loop
3.3 Detection of Overlap

Even when computations for a statement S are marked sequential with respect to a loop, they
may still overlap when they are distributed over more than one processor. The algorithm
described in the previous section ignores that overlap. We now describe special cases when the
compiler can estimate the extent of overlap, and modify the cost estimates appropriately. It
may be recalled that computations for S would be marked sequential with respect to a loop L;
if there is any flow dependence to S from another statement belonging to the same SCC in the
level-l dependence graph DG;. We consider the special cases when the only flow dependence

to S is from itself.

3.3.1 Case 1: OneToMany dependence

A special case of loop-carried flow dependence is one where the dependence is from a single
instance of a statement to other instances of the same statement. Consider the example shown
in Figure 3.6. If we have 1 < k < n, there is a flow dependence from the statement instance
corresponding to the kth iteration to those corresponding to later iterations. Continuing with
the terminology from the previous section, let the loop have its index j; varying from i; to f;

in steps of s;. When the iteration corresponding to the source of dependence can be identified
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doi=1,n
A(1) = F(A(k))
enddo

Figure 3.6: Statement with onetomany dependence

at compile-time (say, j; = d;), the compiler analyzes the loop by breaking it up into three
parts: the (possibly empty) initial part with loop bounds %, and d; — s, the single iteration
d;, and the final part with loop bounds d; + s; and fi. Both the initial part and the final
parts can now be regarded as parallelizable loops, and the overall contribution term obtained
as C)(8) = C{(S)+ 1 + C,f(.S'), where C}(S) and C,f(S) denote contribution terms from the

initial and the final parts of the loop respectively, and are obtained using Equation 3.2.

3.3.2 Case 2: Constant dependence

For a statement S, when the only flow dependence carried by loop L; has a constant dependence
distance d, there is an overlap possible between computations of S over d successive iterations
of L;. Figure 3.7 shows an example of such a statement, and illustrates the overlap possible
between computations in the i-loop, for the general case of A being distributed in a blocked-
cyclic manner. The expression for the overlap term (using the terminology defined in the

previous section) is:

0y(8) = (min(d - 1, |bx/(lea| * 81)]) * ([(|aa] ¥ ) /bi] - 1)

In the above expression, [(|a;|*71)/bk] — 1 represents the expected number of processor bound-
aries “traversed” by the computation during the loop L;. The term min(d — 1, {bx/(|c1| * 81)])
gives the number of iterations corresponding to the traversal of each block, that can be over-

lapped with the computation of elements in the preceding block.

However, on most multicomputers, the need to. vectorize messages being sent in the i-loop
(to offset the high start-up costs of sending messages) would make it undesirable to exploit the

pipelining of computation at this level. The above analysis is now used for obtaining a balance
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doi=d+1,n
A(i) = F(A(: - d))

enddo
P0
P, ? .
A
P2 " .
d*al*Sl bk

Figure 3.7: Overlap of computations in case of constant dependence

between the two goals of vectorizing messages and exploiting pipeline parallelism. That can be
done by stripmining [55] the loop L;, and the analysis we have shown helps choose the block
size for stripmining in such cases. However as we shall explain in the next chapter, PARADIGM

does not currently carry out this analysis for the purpose of estimating communication costs.
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CHAPTER 4

ESTIMATION OF COMMUNICATION COSTS

This chapter describes the methodology for estimating the times spent on communication during
program execution. These estimates are obtained in a largely machine-independent manner,
and are expressed in terms of times to carry out certain high-level communication primitives
on the target machine. Given information regarding the performance characteristics of those
primitives on a multicomputer, the actual times spent on communication can then be estimated

for that specific machine.

Our primary objective for estimating communication costs is to determine the quality mea-
sures of various communication constraints, and hence guide the selection of data partitioning
scheme. However in that process, the compiler also identifies better ways of generating com-
munication. It determines when messages may be combined to reduce the communication
overheads, and the loop transformations that need to be applied to enable such optimizations.
Besides, the compiler also identifies opportunities for using collective communication primitives,

which is useful in many ways:

¢ The code generated using this analysis is much more concise, as numerous calls to the

send and receive primitives get replaced by fewer calls to high-level primitives.

o The performance of programs can be improved by exploiting efficient implementations
of such routines on the target machine. For instance, the broadcast routine can be im-

plemented using logy(N) steps on an N-processor machine, whereas an equivalent piece
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of code using individual send and receive primitives would take up NV steps. It can be
seen that the performance benefits improve with an increase in the value of N. Hence,
the exploitation of collective communication is especially important for massively parallel

machines.

Our main motivation for performing this analysis in the context of performance estimation
has been to capture the communication costs in a concise manner. Thus, our methodology
for estimation of communication costs also lays down a framework for effective generation of

interprocessor communication by compilers [26].

In keeping with the objective of obtaining quality measures of constraints on distribution
of specific arrays, the estimation of communication costs is done separately for each array
referenced in a statement. The estimates reflect the communication requirements pertaining
to that array for executing all instances of the given statement. This process consists of the
following steps: (i) determining the extent to which communication can be combined, and
where the communication should be placed, (ii) analyzing the data movement required in each
mesh dimension to recognize the best communication primitive to use, and to determine the
data sizes and the number of processors involved in that communication, and (iii) determining
the order in which communication primitives operating over different mesh dimensions should
be invoked. Each of these steps is described in detail, following a description of the high-level
communication primitives, and some results on the characterization of array references that

helps carry out the second step.

4.1 Communication Primitives

This section describes the special primitives that are recognized by the compiler as appropriate
for implementing the data movement in different parts of a program. Many of the early ideas
on these routines came from Geoffrey Fox and his co-workers [21], in the context of developing
scientific application programs on multicomputers. Many researchers have looked at the prob-

lem of developing efficient algorithms for such primitives [32, 37], and obtaining parameterized
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estimates for the performance of those primitives on specific machines [7, 38]. The list of prim-
itives is given below. All of these primitives, other than Transfer, are referred to as collective

communication primitives, since they represent communication over a collection of processors.

e Transfer : a single source processor sends a message to a single destination processor.

¢ OneToManyMulticast : a single source processor sends a message to all other processors
in the given group.

e ManyToManyMulticast : all processors in the group send data to all other processors in
that group.

e Scatter : a single source processor sends different messages to all other processors in the
group.

e Gather : all processors send messages to a single destination processor in the group.

e Shift : circular shift of data among adjacent processors in a group.

e Reduction : reduction of data using a simple associative and commutative operator, over

all of the processors in the group.

Figure 4.1 illustrates the data movement associated with each routine. Table 4.1 shows the
time complexities of functions corresponding to these primitives on the hypercube architecture.
The parameter m denotes the message size in words, p represents the number of processors in

the group over which the collective communication routine is carried out.

The use of high-level collective communication routines is becoming increasingly popular
with application programmers on multicomputers. A number of such communication libraries

have been developed, in some cases, as part of a broader research effort [56, 21, 16, 67].

4.2 Characterization of Array References

The communication requirements for an rhs array reference in a statement depend on the

relationship between processors owning the elements corresponding to the rhs and the 1lhs
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Figure 4.1: Communication primitives recognized by PARADIGM
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[ Primitive | Cost on Hypercube |
Transfer(m) O(m)
OneToManyMulticast(m,p) | O(m=* log p)
ManyToManyMulticast(m, p) | O(m=* p)

Scatter(m, p) O(m *p)
Gather(m, p) O(m * p)
Shift(m) O(m)
Reduction(m, p) O(mx log p)

Table 4.1: Cost complexities of communication primitives on the hypercube architecture

reference for all instances of that statement. (Throughout this thesis, we shall use the term
array reference to refer to the symbolic term appearing in the program, not the physical reference
(read or write) to the element(s) represented by that term). In order to infer the pattern of
communication during different iterations of a loop, the compiler has to study the variation of
subscripts corresponding to distributed dimensions in those references. In this section, we define
the properties regarding such variations, and present compile time tests to detect the presence
of those properties. These tests enable the compiler to identify the high-level primitives that
can effectively realize the data movement needed. In addition, we define quantities associated
with array references that help characterize the extent of communication in terms of data sizes
and the number of processors involved. The results presented in this section shall be used in

the algorithms described in Section 4.4 to obtain the communication cost terms.

4.2.1 Definitions

We refer to a subscript in an array reference, corresponding to a particular distributed dimension
as a sub-reference. A sub-reference can be represented by a tuple (r,d), where r is an array
reference, and d is the position (d > 1) of the subscript in that reference. A sub-reference varying
inside a loop can be seen as traversing a sequence of elements distributed on different processors
along a mesh dimension. Figure 4.2 shows the traversal of two sub-references, (A(%,¢1),1) and

(B(ez2,1),2), by solid lines.
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doi=1,n
A(‘l, Cl) = B(Cz,i)

enddo
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Figure 4.2: Example program segment

The sequence of processor positions in a mesh dimension traversed by a sub-reference sr in
a loop L is referred to as its ezternal sequence with respect to the loop, denoted as es(sr, L).
Similarly, the sequence of memory locations traversed on a processor at position p in the mesh
dimension is referred to as its internal sequence, denoted as is(sr, L, p). The number of proces-
sor positions traversed by the sub-reference, i.e., the length of its external sequence is referred
to as les(sr, L). Correspondingly, the number of memory locations traversed on a particular
processor is referred to as 1is(sr, L,p). Another useful quantity the compiler often needs to
compute is the maximum length of any internal sequence of a sub-reference with respect to
a loop, denoted as mlis(sr,L). It is defined as the maximum value of lis(sr,L,p) for all p
belonging to es(sr, L). For the sub-reference sr = (A(%,¢;),1) in Figure 4.2, it can be seen that
les(sr, L) = 4, and mlis(sr, L) = [n/4].

Each point in the loop (identified by the value of loop index) at which the sub-reference
crosses a processor boundary in that mesh dimension is called a transition point of the loop

for that sub-reference. We now define some properties describing the relationships between

42



sub-references varying inside the same loop, that help characterize the data movement for that
loop.

Property 1 A sub-reference sry is said to be k-synchronous (k is a positive integer) with
another sub-reference srz, with respect to a loop L, if (i) every tramsition point of L for srs
coincides with a transition point of L for sry, and (ii) between every pair of consecutive transition
points of L for sry, there are exactly k — 1 transition points of L for sry.

Ezample:  In Figure 4.2, the sub-reference (A(%,c1),1) is 2-synchronous with (B(cz,1),2),

with respect to the i-loop.

Property 2 A sub-references sr; is said to be strictly synchronous with another sub-reference
sr9, with respect to a loop L, if (i) sry is 1-synchronous with sr3, with respect to L (i.e., every
transition point of L for s7; is also a transition point of L for srz, and vice versa), and (ii) the
coinciding transition points represent the cross-over points between the same processor numbers
in the respective mesh dimensions for those sub-references.
FEzample: In Figure 4.2, if B; were distributed on four processors (rather than two), the
sub-reference {A(4,c¢;),1) would be strictly synchronous with (B(e2,1),2), with respect to the
i-loop.

A useful convention adopted regarding the k-synchronous property is that k is also allowed
to be a reciprocal of positive integer. In that case, a statement that sry is k-synchronous with

sr, is really to be interpreted as conveying that sry is 1/k-synchronous with srq.

4.2.2 Static Determination of Characteristics

We now present some results that enable determination of the above characteristics of sub-
references at compile time. The expressions obtained pertaining to the traversal of sub-
references help determine the data sizes and the number of processors involved in corresponding
communications. The tests on synchronous properties between pairs of sub-references help iden-

tify the communication primitive that is suitable for implementing the required data movement.
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All of the results presented in this section are for sub-references of the type single~index
(we shall often use the terms subscript and sub-reference interchangeably). The corresponding
analysis for sub-references of the type constant is trivial, for those of the type multiple-index
is based on these results, and for sub-references of the type unknown cannot be done precisely
at compile-time. We shall describe how each of those cases is handled, when we describe the

procedure for estimating communication costs, based on these results.

Traversal of Sub-references

Consider a sub-reference sr of the type single-index, with subscript expression e = a*j; + g.
We shall continue with the terminology introduced in Chapter 3 (the corresponding dimension
Ay, is distributed on Ny processors in a blocked-cyclic manner, with a block size of b, and the
loop L; has a range of r; = max(fi — 4+ 1, 0). The symbolic expression used for the estimated

length of the external sequence of sr with respect to L; is:

las(sr,L;) = min(Nk, [(la|*r)/bk]) (4.1)

The expression for m1is(sr, L;) has already been shown in Chapter 3, under a different guise.
If sr appears in the 1hs array reference of a statement S (and is the only one among the 1hs
sub-references varying in the loop L;), the maximum number of instances of § (corresponding
to iterations of L;) assigned to a single processor is given by mlis(sr, L;). This is precisely
what was determined as C;(S), the contribution term of loop L; for the computational cost of

statement S. Thus, using Equation 3.2, we have:

mlis(sr, L)) = ([bk/(lel * s1)] * [(lel * 70)/(Nk % bi)]) +

min(|bk/(|al * 1)), [((le] * ri) mod (Ni = bk))/(lal * s1)])  (4.2)

Synchronous Properties

We now present tests to detect the synchronous properties for a pair of sub-references. In order

to prove our results regarding the synchronous properties, we need the following two lemmas.
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Lemma 4.1 Given any integer z, and positive integers y and 2,

lz/(y* 2)] = |lz/y]/2]

Proof
Let T = g*y+r, where 0 < r < ¥, ¢ and r are integers.
Let q = qg*xz+17, where 0 < r < 2z, ¢/, and ' are integers.
We have  |z/(y * )] = [(g*y+1)/(y*2)]
= |lg/z+7/(y*2)]
= (d*z+7)/z+1/(yx2)]
= ¢ +r'/z+7/(y*2)]
= ¢+ |(F*y+7)/(y*2)]
Now rrxy+r < (P+1)»y (since r < y)
M1 < z (since 7' < z)
Hence, ry4r < zxy
[(F*xy+7)/(y*x2)] = 0
Therefore, |z/(y*2)] = ¢
= la/z]
= [l=/yl/z]
a

Lemma 4.2 Given any integer z, and positive integers y and z,

lz1/n1] = [z2/y2] = |z1/(z*p1)] = [z2/(z* y2)]
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Proof

tz1/9) = |z2/y2]
= [lz1/31]/z] = |lz2/y2]/2]
= lz1/(2 * 1)) = |z2/(z*y2)] (by Lemma 4.1)

Strictly synchronous sub-references Consider two sub-references sr; and sra, correspond-
ing to array dimensions that are distributed in the same manner - blocked or cyclic, and on
an equal number of processors (say, Ni), in case of cyclic distribution. Let their subscript
\ expressions be e; = a; * ¢ + (1, and ez = a3 *i + B2. Let b; and by be the block sizes, and
o1 and o9 be the offsets of distribution of the corresponding array dimensions. During loop
iteration i, the positions in their mesh dimensions to which the two sub-references get mapped
are [(a3 *i 4+ By — 01)/b1)[modNg] and [(a2 * i + B2 — 02)/b2][mod Nk] respectively. Clearly,

sry is strictly synchronous with sry, with respect to the i-loop L, if

[(ar*i+ 51 —01)/b1] = (a2 * i+ B2 — 02)/bs)
The following theorem gives sufficient conditions under which the above equation holds, and

hence, gives sufficient conditions for the strictly synchronous property.

Theorem 4.1 Let sty and sr; be two sub-references, as described above. The sub-reference
sty 18 strictly synchronous with srq, with respect to loop L if either of the following sets of

conditions are satisfied:

o (i) a1/b1 = ay/bz, and (ii) (B1 — 01)/b1 = (B2 — 02)/bs,

or

® (i) by =m=*ay, (ii) bp = m* a3, and (i) (B — 01)/e1]| = |(B2 — 02)/ 2],

where m s a positive integer.
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Proof The first set of conditions implies that

(al*i)/b1+(ﬂ1—ol)/b1 = (a«z*i)/b2+(ﬂ2—02)/b2, Viel
= (a1 xi+p1—o01)/bi] = [(ez*i+ B2 —02)/b2) (Q.E.D. for case 1)

The condition (iii) from the second set implies that

[(B2 = 02)/ 2] +1, Viel

(B2 — 02)/ 2 + i,

[(Br —01)/aa] +4

= (B —a)/on+1]
=  |(e1*i+ B —01) o] = |(ag*i+ B2 —03)/2]

(a2 * i+ B2 — 02)/(m * a2)] (by Lemma 4.2)

= |_(a1*z'+,31 —01)/(171*01)_,

= [(a1*i+ B —01)/b1] = [(e2%i+ B2 —o02)/b2]  (from conditions (i) and (ii))

k-synchronous sub-references The conditions we check to see whether sr; is k-synchronous

with sr, are obtained in a similar manner, and are shown below:

Theorem 4.2 Let sty and sty be two sub-references as described above. The sub-reference sry
is k-synchronous (k being an integer) with sry, with respect to loop L if either of the following

sets of conditions are satisfied:

o (i) a1/by = k*(az/b3), and (ii) (81— 01)/by = kx((B2 —02)/b2) +1, where | is an integer,

or

o (i)bi=m=xay, (ii) by = k *xm x ay, and (iii) |(f1 — 01)/ar] = [(B2 — 02)/a2] + m* 1,

where m and | are integers, and m > 0.

Proof Omitted, similar to the proof of Theorem 4.1 shown above.
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Other Methods of Characterization

During the analysis of communication requirements, if the compiler is unable to establish a
k-synchronous property between two sub-references of the type single-index, it often needs
other measures to characterize the relationship between the two sub-references. One such

measure is the speed-ratio, defined as:
speed-ratio(sry,sra, L) = [(ay *b2)/(az + b)] (4.3)

This captures roughly, the “speed” with which the sub-reference sry crosses processor bound-
aries in the loop L, relative to the sub-reference sry. This measure is a generalization of the
notion of k-synchronous property, and it may be observed that a k-synchronous property be-

tween two sub-references for a given loop implies a speed-ratio of k.

Boundary-communication The “boundary-communication” is a specialized test performed
between sub-references corresponding to aligned dimensions, and related by a speed-ratio of
one. This test helps detect data movement taking place across boundaries of regions allocated

to neighboring processors. It checks for the following conditions:
1. C!]/b1 = ag/bg.
2. |(Br—o01)/br—(B2—02)/ba| < 1.

If the above conditions are satisfied, the amount of data transfer across the boundary of each

participating processor is estimated as:

bd(sry, 812, L) = ([|(B1 — 01)/(ea * 81) — (B2 — 02)/ (a2 * 81)[]) * ([(e2 % 71}/ (Ni % b2)]) (4.4)

where the symbols s;, r;, N have their usual meaning. The first term, [|(81 — 01)/(o1 * 81) —
(B2 — 02)/(az * 3;)|] gives the number of elements transferred across a single block of the array
dimension. The second term in the product gives the number of blocks (among those traversed

by the sub-reference sr;) that are held by a single processor.
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do j1 =11, f1, 81
do j2 = 12, f2,52
do jm = imyfmasm

A(91, 92, -1 99) = F(B(h1 hay .. ) (S)

Figure 4.3: Statement requiring communication of data

4.3 Placement of Communication

Consider a statement S shown in Figure 4.3. Prior to the execution of any instance of that
statement, the value of B(Ay, ha, ..., k) has to be sent to the processor owning A(g1,92,---,9p)
if the two elements are owned by different processors. In the absence of any optimization, the
communication required to implement this data movement for array B is placed just before
that statement. However, that may lead to a serious problem on most multicomputers, where
the start-up cost of sending a message is much greater than the per-element cost. Hence com-
bining messages, particularly those being sent in different iterations of a loop, is an important
optimization goal for most compilers for multicomputers [30, 22, 15]. During the setup pass,
PARADIGM determines the outermost possible level at which communication for each array refer-
ence can legally be placed. Later, other considerations such as regularity of data movement and

exploitation of pipeline parallelism further influence the actual placement of communication.

4.3.1 Moving Communication Outside Loops

The algorithm in Figure 4.4 shows how the compiler determines the outermost loop level at
which communication involving array B in statement S can be placed. The existence of a
flow dependence edge due to array B from S’ to § with a nesting level of k£ implies that the
values of some elements of B that may be involved in communication are computed in the

loop L (the nesting level of a dependence is the innermost loop level with respect to which
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lmaz =0
for each dependence into S do
if ((dependence-type == flow) and (dependence due to array B))
S’ = source statement of dependence
determine k = nesting level of dependence
for I=k;l>1;l—-)do
if S and S’ belong to same SCC in DG,
break
endif
endfor
Imaz = maz(l,lmaz)
endif

endfor
Identify the doall loops outside loop Limaz-

Figure 4.4: Algorithm to determine communication level for reference to B in §

the dependence is carried, or if the dependence is loop independent, the common nesting level
of the two statements involved in that dependence). Further, if that edge comes from a node
belonging to the same SCC in DG/ (defined earlier in Chapter 3), the communication has to be
done within the loop L; to honor the data dependence. However, if the edge comes from a node
belonging to a different SCC, by distributing the loop over these components, the compiler can

take the communication out of the loop.

PARADIGM infers that communication can be combined with respect to all the loops inside
Limazr and with respect to all the doall loops outside Liyq,. In order to ensure this combining,
the compiler has to perform some loop transformations which can be identified by simple exten-
sions to this algorithm. Whenever the source S’ of a loop-carried dependence and S belong to
different SCCs in the level-l dependence graph DG, if | takes a higher value than the eventual
value of Imazx, the loop L; has to be distributed over the SCCs corresponding to S’ and S to
allow communication to be combined with respect to that loop. Even though communication
has to be placed inside loop Limaz, it can be combined with respect to any doall loop outside
Limaz by bringing the doall loop inwards. Note that &n outer doall loop can be brought inside

Limaz even if there are intervening loops, and even if the loops are not part of a perfectly nested
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doi=1,n

doj=2,n
A("a]) = f(A("J - 1)13(31] - 1)) (Sl)
enddo
D(i) = F(A(i,n), D(i - 1)) (83)
enddo

Figure 4.5: Original program segment

(=< S1
== (=)
=<
(= S2

© <>O 33

Figure 4.6: Dependence graph for the example program segment

structure. This can be achieved by applying a sequence of the following transformations, which

are always valid:

¢ Distribution of a doall loop over statements constituting its body.

¢ Loop permutation [8] (a special case of that is loop interchange) that brings a doall loop

inwards.

The application of these transformations is illustrated by the example shown in Figure 4.5.
The dependence graph for this program segment is shown in Figure 4.6. Consider the process
of determining the level for communication involving array B for statement S1. There is a flow

dependence from statement S2, carried by the j-loop at level 2. Also, $2 belongs to the same
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doj=2,n
doi=1,n
A(i,j) = F(A(,5- 1), B(i,j - 1)) (81)
enddo
doi=1,n
enddo
enddo
doi=1,n
D(?) = F(A(3,n), D(i— 1)) (S3)
enddo

Figure 4.7: Transformed program segment

SCC as S1in DG,. Hence communication has to take place inside the j-loop, and the value of
Imaz is set to 2. The examination of loops outside the j-loop reveals that the :-loop is a doall.
Hence the i-loop is brought inside by distribution over the j-loop and S3, followed by a loop
interchange with the j-loop. Since the flow dependence to S1 is from a different statement 52,
the i-loop is further distributed over S1 and §2. The transformed program segment is shown

in Figure 4.7.

In general, the loop structure surrounding a statement with array references can finally be
transformed to the form shown in Figure 4.8. All of the loops L;4; through L,, are those from
which communication can be taken outside (we shall refer to them as type-1 loops), while the
loops L; through L; are those which must have communication taking place inside them due

to dependence constraints (we shall refer to such loops as type-2 loops).

The characterization of a loop as type-1 or type-2 is always with respect to a particular rhs
reference, since it depends on the outermost level at which communication for that reference can
legally be placed. While a parallelizable loop is always type-1 (or can be transformed to become
type-1) with respect to all rhs references in the statements inside it, an inherently sequential
loop may also be type-1 with respect to a given rhs reference. Throughout the remainder of
this chapter, we shall refer to a loop simply as a type-1 or type-2 loop, where it is clear which

rhs reference is being considered.
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do j1 = i1, fi,91  (type-2)

do ji=1i, fi,s1  (type-2)
( communication for (A(g1,---,9p), B(h1,-- -, hqg)))
do fi41 = Gs1, fisr, 8141 (type-l)

do jm = im, fmsSm  (type-1)

A(g1192a .. °’gp) = f(B(hl’h% . -ahq))

Figure 4.8: Statement involving communication

4.3.2 Limits on Combining of Messages

While the combining of messages is desirable for amortizing the high start-up costs of com-
munication, it may not always be optimal to place communication at the outermost possible
loop level. One reason for that is a possible reduction of overlap between computations when
messages are combined. For instance, consider the program segment and the associated data
movement shown in Figure 4.9, where A is distributed by rows. If the messages are combined
for all iterations of the j-loop, each processor sends data to its neighboring processor only after
completing its entire share of computation. A greater amount of overlap is possible between
those computations if the j-loop is stripmined (corresponding to the dotted vertical lines), and
the communication of values is done between execution of successive strips. Once all the data
partitioning parameters are known, PARADIGM can provide the performance estimates to help
choose an appropriate block size that balances the benefits of combining messages and ex-
ploiting pipeline parallelism [31]. However during the process of selection of data partitioning
parameters, PARADIGM avoids the complexity of adding one more variable (block size of strip-
mining) to the symbolic expressions for estimated performance by giving priority to combining
of messages, and ignoring the possibility of stripmining.

Another situation when it may be better not to combine communication with respect to a

type-1 loop is when that data movement is not “regular enough” (or known at compile-time
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>

di=2 ——————
doj=1,n
AG, ) = ... AG-L,j) .. ¥ v —
enddo
enddo V- ¥ — —

Figure 4.9: Combining of messages versus exploitation of pipeline parallelism

doi=1,n
A(i) = F(B(D(3)))
enddo

Figure 4.10: Statement with irregular data movement

to be regular enough) in the loop. This notion of regularity will be made precise in the next
section. In such cases, the use of collective communication necessarily involves communication
of extra values. Therefore, it may be better to carry out communication inside the type-1
loop, i.e., use repeated calls to the Transfer primitive during different iterations of that loop,
rather than a single call to collective communication primitive for the entire loop. For instance,
consider the type-1 loop shown in Figure 4.10. The use of collective communication would
involve each processor (on which B is distributed) sending the entire section of array B that it
owns to all the processors on which A is distributed. This primitive is carried out only once,
before entering the loop. However, it involves communication of larger amounts of data than
necessary, and also requires each processor to allocate a greater amount of space to receive
the incoming data. The other alternative that we mentioned is to carry out communication
inside the loop. During each iteration, the owner of B(D(?)) is determined, and if it is different
from the owner of A(:), the value of B(D(1)) is communicated using a Transfer operation. Yet

another alternative is to use the run-time compilation techniques developed by Saltz et al. [67]
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and Koelbel et al. [44]. The compiler generates an inspector that pre-processes the loop body

at run-time to determine the communication requirements for each processor.

The best method to use amongst these usually depends on the nature of the problem and
the target machine characteristics. If the given loop itself appears inside another loop and the
values of elements of D do not change inside that outer loop, using the inspector method is likely
to be the best, since the overhead of inspector gets amortized over different iterations of the
outer loop. Otherwise, if the target machine has a large set-up cost for sending messages, and
has enough memory (given the data sizes used) on each node, it may be better to use collective
communication. On a massively parallel machine tackling a large-sized problem, where the
memory limitation on each node is more severe, the use of Transfer operations inside the loop

may be the best, or the only choice.

Ideally, a compiler generating communication should choose amongst these alternatives
only after evaluating these trade-offs, and taking into account the resource constraints. For the
purpose of estimation of costs, PARADIGM assumes that communication would be combined

with respect to every type-1 loop, even if that leads to communication of some extra values.

4.4 Identification of Communication Terms

Consider again the two array references shown in Figure 4.8. The compiler analyzes each
pair of sub-references corresponding to aligned array dimensions in those references, and ob-
tains a term representing the cost of communication in that mesh dimension. Each term
gives a “one-dimensional” view of the data movement in a specific dimension. For instance,
in the data movement shown in Figure 4.11, the individual terms corresponding to the move-
ment in the two mesh dimensions are Scatter(m;,3), and OneToManyMulticast(mz,3). These
terms are composed to give an overall communication cost estimate of Scatter(m; * m3,3) +
OneToManyMulticast(m; * mq,3). In this section, we show how terms are obtained for each
pair of sub-references. The next section describes the procedure for obtaining the overall cost

estimates based on these terms.
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Figure 4.11: Different data movements in the two mesh dimensions
4.4.1 Overview of Algorithm

Given the 1hs and the rhs reference, the compiler first matches pairs of sub-references cor-
responding to aligned array dimensions. If the 1hs and the rhs arrays differ in the number
of dimensions, the sub-references corresponding to the “extra” distributed dimensions of one
array are paired up with sub-references corresponding to the “missing” dimensions of the other
array. The “missing” sub-reference is regarded as being of the type constant. For each pair of
sub-references, the larger of their values of variation-level identifies the innermost loop in

which data movement for that mesh dimension takes place.

The compiler now steps through each of the loops surrounding the given statement, from
the innermost to the outermost loop. For each loop, it identifies the matched pair(s) of sub-
references, if any, for which the value of variation-level is equal to the current loop level.
Depending on whether the current loop is a type-1 or a type-2 loop, the compiler invokes the
appropriate procedure to obtain the term(s) representing the cost of communication in the
corresponding mesh dimension(s). Initially, the compiler assumes that communication would

be placed at the outermost possible level !, determined earlier, as shown in Figure 4.8. Hence,
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the loops Li41 ...Lm are regarded as type-1 loops, and all others as type-2 loops. However, as
the algorithm proceeds from inner loop onwards, the analysis for data movement in the current
loop may designate an outer loop previously marked type-1 as a type-2 loop (this shall be
discussed further along with the detailed description of the analysis performed). Therefore at
each step, the compiler has to check whether the current loop is to be regarded as a type-2 or

a type-1 loop.

If there is no pair of sub-references identified in the above step for a given loop, there is no
communication term obtained for that loop. If the given loop is a type-1, the significance of
this case is that any communication taking place for the rhs reference need not be repeated
inside this loop, since the values communicated once (before executing this loop) can be reused.
On the other hand, if it is a type-2 loop, any communication taking place simply gets repeated
inside this loop. The iteration count of the loop only modifies the value of other communication
cost terms in this case. That modification is done during the step performing the composition

of all the individual terms.

Finally, the compiler analyzes the remaining pairs of sub-references that do not vary inside
any loop. For each such pair, both the sub-references are of the type constant. If the elements
corresponding to those sub-references are mapped to different positions in the mesh dimension,
there is a need for Transfer primitive to make up that position difference. A symbolic expression
is obtained for the communication cost in terms of N (the number of processors in the mesh
dimension), based on the following simplifying assumption. Any two arbitrary elements along
the given array dimension are assumed to belong to the same processor with a probability
of 1/Ni. Hence, the probability that a Transfer is needed is 1 — 1/Ng, and the cost term is
obtained as (1 — 1/Nj) * Transfer(1). This elegantly takes care of the important boundary case
N, = 1, since the communication cost term does evaluate to zero when the array dimension is

sequentialized.

We now describe the analysis performed by the compiler to obtain communication cost
terms for the pairs of sub-references varying in a loop. For the variation of sub-references in a

type-2 loop, the term represents the data movement taking place in a single loop iteration. For
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the variation in a type-1 loop, the term obtained represents the data movement for the entire

loop.

4.4.2 Data Movement in Type-2 Loops

Since any communication in a type-2 loop, L, has to be realized with a separate message during
every iteration, the primitive used is Transfer, with a data size of one. The only analysis needed
is to estimate how often the elements corresponding to the two sub-references sry and sr; are

mapped to different processors. The compiler first checks for the following special cases:

1. Both sry and sry are of the type single-indez, and sry is strictly synchronous with sry,
with respect to L. This implies that there is no interprocessor communication required.

Hence, no communication cost term is returned in this case.

2. Both sry and sr, are of the type single-indez, and satisfy the boundary-communication test.
In this case, the number of iterations during which a Transfer primitive has to be used is
given by bd(sry,srz, L) * (1es(sra, L) — 1). The term 1les(srz, L) — 1 denotes the number
of processor boundaries across which communication takes place, while bd(sry, 872, L)
denotes the number of data items that are transferred (in different iterations) across
each processor boundary. The expressions for these terms have been shown earlier in
Equations 4.1 and 4.4 respectively. Thus, the cost term returned is bd(sry,sry, L) *
(les(srz, L) — 1)  Transfer(1). This is the only case in which a term for communication
in a type-2 loop represents the cost for all the loop iterations, hence this term is marked

for special handling during the composition step.

3. Both sr; and sr, have an identical expression. In this case, the elements corresponding
to both the sub-references are expected to be mapped to the same position in the mesh

dimension. Hence, no communication cost term is returned.

In all other cases, the compiler assumes that a Transfer is needed during every iteration

with a probability of 1 — 1/N,. Hence, the communication cost term returned is (1 — 1/Ny)
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Transfer(1). If there are multiple pairs of sub-references varying in the same type-2 loop, the

above analysis is repeated for each pair to obtain separate cost terms.

4.4.3 Data Movement in Type-1 Loops

The data movements required in different iterations of a type-1 loop can legally be combined.
Therefore, the compiler attempts to recognize the communication primitive that best realizes
the collective movement, and obtains the term(s) representing its cost. The techniques we have
developed allow this analysis to be carried out for arbitrary kinds of sub-references, and for any
arbitrary number of pairs of sub-references varying in a loop. For ease of presentation, we shall

describe different aspects of the analysis separately.

Single pair of varying sub-references

Table 4.2 lists the communication term(s) obtained if there is a single pair of sub-references
varying in such a loop L. This table enumerates the cases corresponding to only the “basic”
categories of the subscripts for the 1hs and rhs sub-references. The results for the other cases
(when the two subscripts of the type single-index have different values of variation-level,
or when one of the subscripts is of the type multiple-index) are derived in terms of these
results, and are presented later in this section. The column marked conditions tested lists
the tests performed by the compiler to obtain further information about the nature of data
movement. The entry reduction op represents the test to see if the rhs reference is involved in

a reduction operation (such as addition, max, min) inside the loop.

The case corresponding to both the sub-references being of the type single-index is per-
haps the most commonly occurring pattern inside various loops in the scientific application
programs. If the two sub-references satisfy one of the five tests shown in the table, it means
that the processors can be partitioned into mutually disjoint groups over which the communica-
tion primitives indicated by the cost terms may be carried out in parallel. Figure 4.12 shows the

different kinds of data movement corresponding to those cases. The term IDM(m) (internalized
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[ LHS (sr;) | RHS (sr3) |  Conditions Tested | Communication Term

single-index | constant default OneToManyMulticast(1, les(sry, L))
constant single-index | 1. reduction op Reduction(1,1les(srs, L))

2. default Gather(mlis(srs, L),les(sry, L))
single-index | single-index | 1. sry strictly synch srs IDM(m1is(sry, L))

2. sry 1-synch srp (N1 > 1)+ Transfer(mlis(srz, L))

3. boundary-commn. (i) (N1 > 1)* Shift(bd(sry, sr2, L))

(i) IDM(mlis(sr2, L) — bd(sry,sr2,L))
4. sry k-synch sry, k > 1 | D-Scatter(mlis(srs, L)/k, k)
5. sr1 k-synch srq, k < 1 | D-Gather(mlis(sry, L), 1/k)

Table 4.2: Communication terms for a pair of sub-references varying in a type-1 loop

data movement of m elements) by itself does not represent any communication cost, it affects
the data sizes of other communication cost terms during the composition step, as shall be dis-
cussed later. The symbol D-Scatter represents a Scatter operation over a “different” group, i.e.,
a group that does not include the source processor sending data values. A D-Scatter operation
involves data being sent to p other processors, rather than p — 1 (this distinction is important
for accuracy when p takes a small value). Thus, the term D-Scatter(m, p) is simply short-hand
for the following two terms: (i) (N > 1) * Transfer(m), and (ii) (N1 > 1) # Scatter(m, p), where
Nj is the number of processors on which the aligned array dimensions are distributed. The

term D-Gather(m, p) is defined in a similar manner.

If none of the five tests indicated in the table are satisfied, the compiler computes the
value of speed-ratio(sry,sry, L) using Equation 4.3. Similar to the last two entries for the
k-synchronous property, a D-Scatter or a D-Gather term is used depending on the whether the
value of speed-ratio is greater than or less than one. However, in this case, the Scatter or
the Gather operations corresponding to different groups do not take place entirely in parallel,
since there is an overlap of processors in those groups. This overlapping between groups, and
the resulting contention during the process of communication is modeled by multiplying each

of those terms (represented by D-Scatter or D-Gather) by a factor of two.
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Figure 4.12: Data movements for sub-references of the type single-index

Multiple pairs of varying sub-references

The compiler analyzes all of the sub-references varying in a loop together, to infer the rela-
tionship between simultaneous traversals of those sub-references in different mesh dimensions.
Table 4.3 presents some of the communication cost terms when there are two pairs of sub-
references varying in a loop L. The unnumbered properties listed under the conditions tested
column are those which must be satisfied, before an appropriate cost term is chosen, based on

the numbered condition.

Some of the terms used in the table need to be explained. The function fv chooses the
“faster-varying” sub-reference between two given sub-references. Stated more formally, if a
sub-reference s, is k-synchronous with s (with respect to L), £v(sy,82) is set to sy if k& > 1,
and otherwise to s3. The symbol k,, appearing in various cost terms refers to the value of
max(kq, k;). The symbols N; and N, refer to the number of processors in the two mesh
dimensions corresponding to the “faster-varying” and the “slower-varying” rhs sub-references

respectively.
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LHS

RHS

l

Conditions Tested

Communication Term

single-index (s1) | single-index (s2) | s; ki-synch sz,
single-index (s3) | constant (s4) s3 ko-synch s,

sy ka-synch s3.

1. maz(ky,kg) > 1 D-Scatter(mlis(sz, L)/km, km)

2. maz(ky,ky) =1 (Ns > 1) * Transfer(mlis(sz, L))

3. maz(ky, k) <1 D-Gather(mlis(sz, L), 1/km)
single-index (s;) | single-index (s2) | s1 ki-synch s,,
single-index (s3) | single-index (s4) | s3 k2-synch sq,

§1 k3-synch s,

$q k4-synch sy4.

1. s strictly synch s,

s3 strictly synch sy. IDM(mlis(fv(ssz,s4),L))

2. maz(ky, ko) > 1 D-Scatter(mlis(fv(sz, s4), L)/k, k)

3. maz(ky, ko) =1 (Ny > 1) * Transfer(mlis(£fv(sq,s4), L))

4. maz(ky, kp) < 1 D-Gather(mlis(£fv(s;,s4),L),1/k)
single-index (s,) | single-index (s2) | s; k;-synch s,
constant (s3) single-index (s4) | s1 ky1-synch sy,

82 k3-synch s4. v

1. maz(ky, k2) > 1 D-Scatter(mlis(fv(s2,4), L)/ km,km)

2. maz(ky,ky) =1 (Ny > 1) * Transfer(mlis(fv(s2, s4), L))

3. maz(ky,k2) < 1 D-Gather(mlis(fv(sz,34),L),1/k)
single-index (s1) | constant (s3) 31 k-synch s3 (i) (1 - 1/N,) % Transfer(1)
single-index (s3) | constant (s4) (ii) OneToManyMulticast(1,

Los(£v(s1, 53), L))
single-index (s;) | constant (s2) s1 k-synch sq4.
constant (s3) single-index (s4) | 1. k> 1 D-Scatter(mlis(sg, L)/k, k)

2. k=1 (N > 1) * Transfer(mlis(sq, L))

3. k<1 D-Gather(mlis(sq, L), 1/k)
constant (s;) single-index (s2) | s2 k-synch s4 (i) (1 = 1/N,) * Transfer(m)
constant (s3) single-index (s4) | 1. reduction op (ii) Reduction(1,les(fv(sz,s4), L))

2. default (ii) D-Gather(mlis(fv(s2,s4), L),

les(fv(sz,s4), L))

Table 4.3: Communication terms for two pairs of sub-references varying in a type-1 loop
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Intuitive Explanation Most of the entries in the table correspond to the faster-varying sub-
reference between the 1hs sub-references pitted against the faster-varying sub-reference between
the rhs ones, and selecting a D-Scatter, D-Gather, or Transfer term depending on whether that
1hs sub-reference varies at a faster, slower, or the same rate as the rhs sub-reference. (These
results can thus be extended to handle any arbitrary number of pairs of sub-references varying
in a loop). The only entries that are different correspond to the cases where all of the 1hs or
the rhs sub-references are of the type constant. In those two cases, the appropriate choices
of communication primitive are Reduction/Gather, and OneToManyMulticast respectively. In
the first set of cases, the unnumbered conditions ensure that all the processors in the two mesh
dimensions can be partitioned into mutually disjoint groups over which the indicated primitives
can be carried out in parallel. In fact, the conditions tested in all of those cases can be seen
as equivalent, if one observes that a sub-reference of the type constant is always (trivially)

k-synchronous with another sub-reference of the type single-index.

If the given sub-references do not satisfy the conditions shown in the table, the compiler
first selects the 1hs sub-reference with the higher speed-ratio, and similarly, the faster varying
rhs sub-reference. Now, the speed-ratio is determined for those two sub-references, and the
communication cost term obtained, as described earlier for the case of a single pair of sub-

references varying in the loop.

Example Consider the example shown in Figure 4.13, where both the arrays A and B are
distributed in a blocked manner on a mesh with ¥; x N; processors. Depending on the relative
values of N; and N, the best choice of communication primitive may be Scatter, Transfer,
or Gather. It is not possible to determine the appropriate communication cost term just by
analyzing the two pairs of sub-references individually. For the cases Ny = 4, N; = 2, and
Ny = 2,N; = 4, Figures 4.14 and 4.15 show the use of parallel Scatter and Gather primitives
respectively, over groups of 2 processors each. As shown in Table 4.3, the choice of commu-
nication cost term is governed by the test for k-synchronous property between sub-references
(A(%,¢1),1), and (B(c2,1),2). In those two cases, {A(i,¢1),1) is determined to be 2-synchronous

and 1/2-synchronous, respectively, with (B(cz,1),2), with respect to the i-loop. Hence, the
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doi=1,n
A(i,c1) = F(B(cz,1))
enddo

Figure 4.13: Variation of multiple pairs of sub-references in a loop

Figure 4.14: Choice of D-Scatter term for the given example

compiler chooses the terms D-Scatter({n/4],2) and D-Gather([n/4],2) respectively in those

cases.

Cyclic distributions

All of the analysis we have described above is valid for both kinds of array distributions,
blocked and cyclic. For cyclic distributions, however, another condition is added to the tests for
regularity of data movement. For every sub-reference with a subscript of the form e = ay*ji1+51,

the compiler checks if b, is a multiple of a; * s;, where b, is the block size of distribution of the
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Figure 4.15: Choice of D-Gather term for the given example
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given dimension, and s; is the stride of the loop L;. The satisfaction of this condition ensures
that the data elements involved in any collective communication corresponding to the given sub-
reference can be accessed on the local memories of involved processors with a constant stride.

Otherwise, the compiler uses cost terms corresponding to communication with a degraded

performance.

Different/multiple loop indices

When the subscripts corresponding to a matched pair of sub-references involve different loop
indices, or when one of the subscripts is of the type multiple-index, one simple way to analyze
the data movement in terms of our earlier results would be to “freeze” (i.e., regard as type-2)
all relevant loops except for the innermost one, for the purpose of analysis. This would involve
not combining communication with respect to the frozen loops, and treating the corresponding
loop indices as constants. PARADIGM uses an extension of this idea, with tiling [80] instead of
freezing of one of the outer type-1 loops, so that communication may be combined with respect

to at least the tiles of that loop.

Sub-references with different loop indices Let us first describe the analysis for a pair
of sub-references of the type single-index, but with different values of variation-level.
Consider sub-references sr; and sr, with subscript expressions of the form e¢; = oy * 31 + B4,
€2 = ay * j;m + B2, where I > m. If L,, is a type-2 loop, then sr; is regarded as a sub-reference
of the type constant, and the data movement is analyzed for loop L; in a normal manner.
However, if L,, is a type-1 loop, it is assumed to be tiled suitably by the compiler. (The
compiler generating communication would tile it such that the starting points of the tiles are
precisely the transition points of the loop L,, for the sub-reference sr;). In the context of this

thesis, we shall limit our discussion to just the part dealing with cost estimation.

The value of j,, is regarded as a constant for the purpose of analysis of communication
requirements, as shown in Table 4.2. However, the cost term obtained is modified in the

following manner to model the effect of tiling of the loop L,,. There are two cases:
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1. The sub-reference sr, appears on the rhs: The data size of the cost term is multiplied
by mlis(srz, Lm) to model the effect of combining of communication with respect to the
tiles of the loop L,,. Further, the term itself is multiplied by les(srz, L) to account for
the repetitions corresponding to the number of tiles. In fact, in this case, it is known that
the cost term obtained initially is OneToManyMulticast(1,1es(sry, L;)). It is changed to
les(sry, L) * OneToManyMulticast(mlis(srz, Lm), les(sry, Li)).

2. The sub-reference sr, appears on the lhs: The cost term obtained is multiplied by
les(sry, Ly,) in this case too. However, the data size of the original term is left un-
changed (the data corresponding to the rhs sub-reference is re-used in different iterations

that are part of the same tile).

Some additional analysis is required when there other pairs of sub-references that vary
inside the loop L,,. Consider another pair of sub-references sr3 and sr4, both of the type
single-index with a variation-level of m. This time, the analysis proceeds along the lines
of that shown in Table 4.3. The compiler checks for the k-synchronous property between srs
and sr3, and between sr; and sry, with respect to L,,. Tiling is used only if the k-synchronous
property holds between each of the above pairs. The fastest-varying sub-reference among sr,,
sr3, and sry is selected to determine the tile size. The communication cost term is now modified

using the method shown above. The following example illustrates this process.

Example Consider the statement and the associated data movement for a 4 x 2 mesh shown
in Figure 4.16. The first pair of aligned dimensions have subscripts 7 and j varying in different
loops. The j-loop is tiled, and j is regarded as a constant for the purpose of obtaining the initial
term, OneToManyMulticast(1,4). There is another pair of sub-references varying in the j-loop
(L1). The sub-reference (B(3, j), 1) is 2-synchronous with both (B(J, 7),2) and (A(s, 5),2), with
respect to the j-loop. Hence, the tile size is set to mlis({B(4,7),1), L1) = [n/4]. The number
of tiles is given by les({B(j,j),1),L1) = 4. Therefore, the communication term is changed to
4 * OneToManyMulticast([n/4], 4).
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doj=1n
doi=1,n
A(i,j) = B(j,7)
enddo
enddo

Figure 4.16: Example to illustrate tiling of outer loop

Sub-references with multiple loop indices For all the loops whose indices appear in a
sub-reference of the type multiple-index, the compiler first determines those that are type-1
loops. If there are more than two such loops, the sub-reference is handled the same way as one
of the type unknown. If there is only one such loop, the indices corresponding to the type-2
loops are regarded as constants, and the sub-reference reduces to one of the type single-index.
Thus, in the following discussion, a sub-reference of the type multiple-index has exactly two

indices corresponding to type-1 loops in the subscript expression.

Given such a sub-reference sr; in a pair, if the other sub-reference sr; is of the type constant
or unknown, then the cost term is obtained by regarding sr, as of the type unknown (the analysis
for dealing with a sub-reference of the type unknown is discussed next). Essentially, special
analysis for sr; is applied only when sr; is of the type single-index or multiple-index as

well. The handling of these cases is again based on the idea of tiling.

Let the current loop level being examined be /. Consider first the case of sr; with subscript
expression e; = a1 *ji+ &) *jm+ 51 (I > m), and sry with ez = ag*j;+ B2. Similar to the earlier
case of sub-references with different loop indices, j,, is regarded as a constant for the purpose

of obtaining an initial cost term, and the term obtained is modified to model the effect to tiling
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[ LHS ] RHS | Communication Term ]

unknown constant OneToManyMulticast(1, Ny)
constant unknown Gather([n/Nr1], N1)
unknown single-index
multiple-index | ManyToManyMulticast({n/Nr], Ny)
unknown
single-index unknown ManyToManyMulticast([n/Nr], Nr)
multiple-index

Table 4.4: Collective communication for sub-references involving unknowns

of loop L,,. Consider now the case of both sr; and sr; being of the type multiple-index,
with subscript expressions e; = ay * ji + &} * jm + 51, and e3 = az * j; + aj * jm + B2 (if the
two sub-references together involve more than two indices corresponding to type-1 loops, they
are again handled like sub-references of the type unknown). The compiler obtains the value
of speed-ratio(sry,srz, L), and determines the tile size of L, based on the faster varying
sub-reference. Again, communication cost term is first obtained assuming j is a constant, and

then modified to account for tiling of L,.

Sub-references of the type unknown

If either of the pair of sub-references varying in a type-1 loop is of the type unknown, the
compiler in unable to infer the precise pattern of data movement in that loop. As discussed in
Section 4.3, there is a trade-off in this case between using collective communication with larger
data size and fewer messages, or using repeated Transfers with potentially more messages, but
smaller amounts of data being communicated. For the purpose of estimating communication
costs, PARADIGM currently assumes that the compiler would use collective communication.
Table 4.4 shows the cost term obtained for the loop when at least one of the sub-references is of
the type unknown. In the entries for cost terms, n denotes the size of the corresponding array
dimension, and Ny denotes the number of processors in the mesh dimension. In this case, there
is no special analysis needed for multiple pairs of sub-references varying in a loop. Those pairs

are analyzed independently, and the resulting terms are composed in the normal manner.
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| Terml Term?2 Resultant Term
IDM(m,) IDM(m;) IDM(my * m3)
Gather(my, p1) Gather(ma, p2) Gather(my * ma, py * p2)
IDM(m4), IDM(m3), IDM(m, * mz), (N1 > 1) Shift(c; * m2),

(Ny > 1) Shift(e;)

(Nz > 1) Shift(cz)

(Ng > 1) Shift(CQ * ml),
(N]_ >1& N2> 1) Shift(c1 *Cg)

Reduction(my,p1) Reduction(ma, p2) Reduction(my * ma, py * p2)
ManyToManyMcast(my, p1) | ManyToManyM’cast(my, pa) ManyToManyM’cast(my * ma, p1 * P2)
OneToManyM'cast(my,p;) | OneToManyM’cast(mz, p2) OneToManyM ’cast(my * mg, p1 * p2)

(1 — 1/py1) * Transfer(m,)

(1 — 1/p2) * Transfer(m,)

(1 = 1/(p1 * p2)) * Transfer(m; * ma)

Table 4.5: Combining of terms with identical communication primitives

4.5 Composition of Communication Terms

Once the communication terms corresponding to all the mesh dimensions have been obtained,
they are composed together to obtain the overall estimate of communication cost. This process
consists of the following steps: (i) combining terms with the same communication primitive, (ii)
determining the order in which different primitives are invoked, and modifying the data sizes
of the terms suitably, and (iii) multiplying the terms by the expected number of repetitions of

that communication during the program.

4.5.1 Communication Terms with Same Primitive

The terms involving the same primitive in different mesh dimensions are combined as shown
in Table 4.5. The combined term represents the primitive carried out over a bigger group,

spanning multiple mesh dimensions.

4.5.2 Ordering of Primitives

Since the primitives corresponding to different terms implement the data movement in distinct
mesh dimensions, they can legally be composed in any order. However, the order in which

they are invoked is important because the position of each primitive affects the message sizes
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doi=1,n
A(n,n) = F(B(i,1))
enddo

Figure 4.17: Statement requiring Gather and Transfer in different dimensions

and the number of processors involved (in parallel) in subsequent primitives. It is desirable to
obtain an ordering that leads to fewer processors being involved and smaller messages handled

by each processor, but sometimes, there is a trade-off between the two.

For example, consider the statement shown in Figure 4.17, where the arrays A and B are
distributed in an identical manner on a 2-D mesh. The primitives required are: Gather in the
first dimension, and Transfer in the second dimension. Figure 4.18 illustrates the two possible
orderings for a 3 x 3 mesh. If Gather is invoked first, it is carried out with a data size of n/3
words, over 3 processors, followed by a single Transfer of n words of data. If this ordering is
reversed, there are 3 parallel Transfers that take place, each involving n/3 words, followed by

a Gather operation, also with a data size of n/3 words, over 3 processors.

The second ordering in the above example leads to the use of parallelism in implementing
communication, and would yield better performance if there were no other communications
being carried out on the mesh of processors. This suggests resolving the trade-off in favor
of reducing the message sizes handled by processors. When there is no trade-off involved, the
compiler should use an ordering that reduces the message sizes and/or the number of processors

involved. These considerations suggest the ordering shown in Table 4.6.

Determination of message sizes

The data size associated with each communication term initially represents just one “edge” of
the overall volume of data being communicated. In accordance with the ordering of primitives
shown above, the compiler determines the actual message size for each primitive corresponding

to a communication term.
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Figure 4.18: Possible compositions of Gather and Transfer

[ Rank | Primitive | Message Size | No. of Processors
1 Reduction reduced reduced
2 Scatter reduced increased
3 Shift, Transfer preserved preserved
4 OneToManyMulticast preserved increased
5 Gather increased reduced
6 ManyToManyMulticast | increased increased

Table 4.6: Ordering of communication primitives for composition
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doj=1n
doi=1,n
A(3, 3, ¢1) = F(B(i, c2, ¢3))
enddo
enddo

Figure 4.19: Example of composition of communication terms

First, the compiler determines the product of individual data sizes associated with each
communication term, including an IDM term. This product represents the complete volume
of data to be communicated, and serves as the message size for each term corresponding to
any of the first five primitives listed in Table 4.6. (Note that the data sizes used in terms for
the Reduction and Scatter primitives already reflect the “reduction” in message size caused by
those primitives, as can be seen from the entries shown in Tables 4.2 and 4.3). In case there
are terms present for both Gather and ManyToManyMulticast primitives, the data size for the
ManyToManyMulticast is multiplied further by the number of processors shown in the Gather
term, to account for the increased amount of data participating in that primitive following the

Gather operation.

Example Consider the statement shown in Figure 4.19, where the arrays, A and B are
distributed in an identical manner on a N; x N3 x N3 mesh. The communication terms obtained
are: IDM([n/N1]), OneToManyMulticast(1, N;), and (1 —1/N3)* Transfer(1). These terms are
composed together to give the communication cost estimate as (1 — 1/N3) * Transfer([n/Ny]) +

OneToManyMulticast([n/N,], N2).

4.5.3 Number of Repetitions

The sequence of communication primitives implementing the data movement for the given rhs
array reference is placed at a certain level I/, as shown in Figure 4.8. This communication is
repeated during various iterations of the surrounding type-2 loops, L, through L;. The effect of

various conditionals in the program that influence the flow of control to the given statement is
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modeled by the reaching probability p(S). Hence, the compiler multiplies each communication
cost term by p(S) * ([T4—; n&), where n; represents the iteration count of the loop Li. As
we had noted earlier, a boundary-Transfer term (corresponding to boundary-communication
in a type-2 loop) is treated in a slightly different manner. Such a term already represents
the communication cost for all iterations of the given type-2 loop. Hence, the product shown
above with which that cost term is multiplied, is modified to exclude the iteration count of the
corresponding type-2 loop.

The above analysis assumes strict sequentiality in the process of carrying out communication
inside the type-2 loops. In practice, the generation of messages may sometimes get pipelined
over different iterations of some type-2 loop(s). For an important case, we now present an
algorithm to detect if communication would be overlapped during different iterations of a sur-
rounding type-2 loop Lg—1, and obtain better cost estimates if there is an overlap. This special
case corresponds to boundary communication taking place during a type-2 loop L. We believe
that any generalizations of this analysis would be helpful in refining the process of estimation

of communication costs.

Detection of Pipelining

Consider a pair of sub-references sry and sr; with subscript expressions e; = a1 * jx + B1, and
€3 = Qg * jk + B2, such that the corresponding communication term is a boundary-Transfer.
Let the rhs reference be to an array A, and the corresponding dimension Ay be distributed
in a blocked manner with a block size of by. If sr; is the only sub-reference in the rhs array
reference varying in loop Ly, the following algorithm determines whether communications are

pipelined during different iterations of Li_;.

1. Examine all dependence edges due to A coming into the given statement from statements
inside Lx—;. Let (di,d,...,dm),(m > k) denote the direction vector associated with
such an edge. If for every edge, either dy = “=", or all dependences corresponding to

that edge have a constant distance vector, conclude that pipelining takes place.
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2. If pipelining is detected, for all backward flow dependences (flow dependences in the “>”
direction) at level k examined in Step 1, determine the maximum dependence distance

at level k, and call it bdisty. If there is no backward flow dependence at level k, set the

value of bdist; to 0.

In case of pipelining, the precedence constraints indicate that communications for successive
iterations of the loop Li_; may be started after waiting for those of bdisty + 1 iterations of
L (corresponding to the previous iteration of Li_y) to finish. The only resource constraint
assumed is that a processor can participate in no more than one communication primitive at a

time.

The various communication cost terms for the given reference are modified as follows. For
the sake of illustration, let us ignore all loops outside Ls_;, and let all the loops inside L
be type-1 loops. Consider a cost term T} corresponding to data movement in a type-1 loop.
Without considering the overlap, the contribution of this term to the overall cost estimate
(ignoring the conditionals and the loops outside Li_;) would be ng_y * ng * T1. The term
corresponding to the Transfer taking place in Ly is of the form & * (7 — 1) x T;, where 6 =
bd(sry,872,L), n = les(srz, L), and T; = Transfer(m). The estimate obtained for this term
(without considering the overlap) would be ny_; *§*(n—1)+T2. With the detection of pipelining,

these estimates are modified as follows:

1. The cost estimate of the terms corresponding to data movement in type-1 loops is changed
from ng_q * nx * Ty to (nk + maz(|ba/(|aa] * sk)], bdisty + 1) * (ng—1 — 1)) * T1.
Explanation The communications associated with the inner loop L for the first
iteration of Li_; see a full latency of ng*T;. Due to precedence constraints, each successive
iteration of Ly_; contributes to a further latency of at least (bdisty + 1) * T;. Consider
now the resource constraints. Each processor along the mesh dimension traversed by
L, participates in |b2/(|az| * sx)] of those communications in a single iteration of Lx_,
(|b2/(laz| * sx)] represents the number of iterations of Li that cover a distributed block of
Apr). The resource constraints dictate that each processor has to complete its participation

in all those communications associated with an iteration of L., before starting one for
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doj=2,n1

dO 1= 2,71.2
A(t) = F(A(G - 1)) (S1)
C(i,j) = F(B(1,5), A(¥)) (52)
enddo
enddo

Figure 4.20: Example to illustrate pipélining

the next iteration of Li_;. Thus, each of the remaining nx—; — 1 iterations of that loop

contributes to a latency of max(bdist + 1, |b2/(|az| * sk)]|) * T1.

. The cost estimate of the term corresponding to Transfer in the loop Lg is changed from
np_1*8%(n—1)%T; to §x(n—1)xTo+maz(§, |(6+(bdistp+1)*|az|*8k)/ba])*(nk—1 —1)+T>.
Explanation  For the first iteration of Lg—_;, the full latency corresponding to all
§ » (n — 1) Transfers taking place during loop Ly is seen. For the remaining ne—y — 1
iterations of Lx_1, the resource constraints dictate that each processor has to complete
all of its § Transfers associated with one iteration of Lx_; before starting those for the
next iteration. Also, precedence constraints require that the processor has to wait for the
Transfers taking place during the bdist;+1 iterations of L (corresponding to the previous
iteration of Lg_;) to finish. These bdisty + 1 iterations of Ly involve approximately

[ (8 * (bdisty + 1) * || * 8% )/b2] Transfers.

Consider the statement S1 shown in Figure 4.20. Let N; denote the number of processors

over which the array A is distributed. The communication term associated with sub-reference

(A(¢—1),1)is (N; — 1) = Transfer(1) (using the terminology described above,a; = 1,8, = 1,6 =

1, n = Ny, b = [n/N;]). Without taking pipelining into account, the overall communication

cost estimate for the reference A(i — 1) would be ny * (N, — 1) * Transfer(1).

Let us consider the application of the algorithm described above to this case. All of the

dependence edges involving array A do satisfy the conditions of Step 1, and the algorithm

determines that pipelining takes place. There is no backward flow dependence at level 2, hence
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bdist, is set to 0. The modified procedure now estimates the communication costs for the given

reference to be (n; —1+ Ny —1)*Transfer(1), rather than a conservative n, *(N1—1)*Transfer(1).
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CHAPTER 5

DATA DISTRIBUTION PASSES

One of the basic features of our approach to data partitioning is the decomposition of this
problem into a number of sub-problems, each dealing with a different kind of distribution
parameter for all the arrays. These sub-problems are solved in different passes in PARADIGM.
An overview of the system was given in Chapter 2. In this chapter, we present details on each

of those passes.

As shown in Figure 5.1, each data distribution pass is logically composed of three modules,
the detector, the driver, and the solver. The detector is a complete pass through the
program in which the compiler detects the need for imposing a specific kind of constraint on
the distribution of arrays. The compiler looks for conditions in various computations that
clearly suggest that better performance will be obtained if the distributions of the referenced

arrays satisfy a certain property.

Given that a constraint is to be recorded, the next task is to obtain the quality measure
of that constraint. Depending on whether the constraint affects only the communication costs
or computational costs, or both, the driver invokes the appropriate cost estimator(s) for this
purpose. This seemingly simple task is complicated by the fact that performance estimation
requires complete information about the data partitioning scheme, which is not available at
this stage. Therefore, the driver module has to specify some appropriate, default values for
data distribution parameters that are unknown when the given pass is being run. The extent

of data partitioning information available to the compiler increases during successive passes.
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Figure 5.1: Structure of a data distribution pass

Hence, the use of separate passes allows the data distribution decisions taken during the later

passes to be guided by more accurate quality measures.

Once all the constraints relevant to a given distribution parameter, and their quality mea-
sures have been recorded for the entire program, the solver determines the value of that
parameter for all the arrays. Essentially, the solver obtains (an approximate) solution to
an optimization problem, where the objective is to minimize the execution time of the target
data-parallel program. The optimization process relies on the resolution of any conflicts be-
tween constraints on the basis of their quality measures. That is why quality measures are
defined carefully in our approach to capture the performance implications of the corresponding

constraints.

We now describe the design of each of the four passes in which decisions are taken on different
aspect of the partitioning scheme, namely, (i) alignment of array dimensions, (ii) method of
partitioning (blocked/cyclic), (iii) block sizes of distributions, and (iv) number of processors on

which each array dimension is distributed.
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5.1 Alignment of Array Dimensions

The align pass identifies the constraints on alignment among various array dimensions, and
groups those array dimensions into classes that would be mapped to the same processor-mesh
dimension. In the special case when the maximum dimensionality of any array in the program
(and hence the dimensionality of the virtual processor mesh) is one, the problem becomes trivial,
as all array dimensions are mapped to the same mesh dimension. The problem in its general
form was first discussed and formulated in graph-theoretic terms by Li and Chen [48]. The idea
of conformance preference, introduced by Knobe et al. [41] in the context of SIMD machines is

also similar, but directed towards individual array elements instead of array dimensions.

We use the Component Affinity Graph (CAG) framework [48] for the alignment problem.
The CAG constructed for the program has nodes representing dimensions of arrays. For every
constraint on the alignment of two dimensions, an edge having a weight equal to the quality
measure of the constraint is generated between the corresponding two nodes. Finally, the
compiler solves the component alignment problem, which is defined as partitioning the node set
of the CAG into D (D being the maximum dimensionality of arrays in the program) disjoint
subsets such that the total weight of edges across nodes in different subsets is minimized. Each
subset identifies the array dimensions that are to be mapped to the same mesh dimension. The
weights on edges across the nodes belonging to different subsets denote communication costs
that should be avoided if possible. There is an obvious restriction on the above partitioning,
that no two nodes corresponding to the same array can be in the same subset. Our main
contribution to this specific problem lies in the method of obtaining edge weights that reflect

the communication costs saved by aligning two array dimensions.

5.1.1 Detection of Constraints

The detection of alignment constraints between array dimensions is quite straightforward. The
compiler performs a pairwise analysis of the 1hs array reference with each rhs array reference

in every assignment statement inside a loop. The rhs references corresponding to the same
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doj=1,n
doi=1,n
A(i,5) = F(B(j,3*1))
enddo
enddo

Figure 5.2: References suggesting alignment constraints

array as the 1hs array are ignored in this analysis. The compiler scans through the information
kept on the subscript expressions for both the references. The presence of a pair of subscripts
(one each from the 1hs and rhs references) of the type single-index, and with the same value
of variation-level suggests an alignment constraint on the corresponding array dimensions.
For example, the program segment shown in Figure 5.2 leads to alignment constraints being

recorded for A; and Bz, and for A; and B,.

The significance of checking for the above condition is that in such cases, the alignment
of the two dimensions can help save a great deat deal of communication costs. Normally, the
easiest way to eliminate communication represented by a pair of subscripts is to sequentialize the
corresponding dimensions, but that also implies giving up on parallelism. The above condition
represents a case where even if those dimensions are partitioned on more than one processor,
their remaining distribution parameters can be chosen such that interprocessor communication
is reduced, or eliminated completely. In the above example, communication can be eliminated
by further choosing identical distributions for A; and By, and distributions that give A; thrice
the block size of By but are identical in other regards (blocked/cyclic).

There may be situations when there are multiple candidates for alignment with a given
dimension. For example, in the statement shown in Figure 5.3, either of A; or A; may be
chosen for alignment with D;. The compiler arbitrarily picks one of those dimensions for
alignment. In such cases, the process of determining quality measures usually takes care of
“reducing” the importance of those constraints. In the above example, the compiler would end

up assigning a weight of zero to the edge corresponding to that alignment constraint.
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doi=1,n
D(i) = F(A(3,9))
enddo

Figure 5.3: Multiple candidates for alignment

5.1.2 Determination of Quality Measure

Given an edge corresponding to the alignment constraint between two array dimensions, the
method of quality measure determination should supply a weight to that edge that reflects the
extra communication cost incurred if those dimensions are not aligned. Unfortunately, even
with the availability of a communication cost estimator, there is no satisfactory solution to
this problem in general. Consider two arrays A and B with m and n dimensions respectively,
and an alignment constraint between dimensions A; and B;, 1 < i < m,1 < j < n. The
communication cost can only be estimated corresponding to a given mapping of the array
dimensions to mesh dimensions. For arbitrary values of m and n, we cannot identify two
unique alignment configurations under which the communication costs may be estimated and
compared to determine the penalty in case A; and B; are not aligned. Exhaustively enumerating

all possible cases will only add to the complexity of the problem, and will not be feasible.

We overcome this difficulty in PARADIGM by solving the following approximate problem: for
any pair of references, the alternate alignment configurations evaluated are those corresponding
to the distribution of only two dimensions of each array at a time. We introduce the notion of
primary and secondary pairs of dimensions for this purpose. Given a pair of array references,
two array dimensions are said to form a primary pair if there is an alignment constraint on those
dimensions. The dimensions are referred to as forming a secondary pair if there is no alignment
constraint between them, but they get mapped to the same mesh dimension if the alignment
constraint is honored for another primary pair. For example, in the program segment shown in

Figure 5.4, A; and B; form a primary pair, while A; and B; form a secondary pair.

The compiler examines all alignment constraints for a given pair of references together. The

basic idea underlying the determination of quality measure(s) is to first identify two pairs of
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doi=1,n
doj=1,n
A(i,5) = F(BG, k)
enddo
enddo

Figure 5.4: Identification of primary and secondary pairs
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Figure 5.5: The two alignment configurations to obtain quality measures

dimensions, at least one of which forms a primary pair. The communication cost estimator is
invoked to return the cost estimate, say, ¢;, when the array dimensions are mapped so as to
honor the alignment constraint(s). Next, as shown in Figure 5.5, the alignment of the two pairs
of dimensions is swapped in the data partitioning information supplied to the estimator. The
cost estimate obtained now, say, t; corresponds to the case when the alignment constraint(s) is
(are) not satisfied. If there is only one primary pair of dimensions, the quality measure of that
alignment constraint is set to t; — ¢;. If both the pairs of dimensions are primary pairs, the
quality measure of each of those constraints is set to (¢; —t;)/2. This accounts for the fact that
under the given assumptions about which array dimensions are distributed, if one alignment
constraint is not satisfied, the other will also not be satisfied. Hence, their quality measures are

assigned values that will add up to give the performance penalty of t; — ¢;.

In order to implement the above procedure, whenever a pair of references identifies only
one primary pair, the compiler has to identify a secondary pair of dimensions. If the number of
dimensions in the two arrays are different, the one with fewer dimensions is regarded as having

extra “missing” dimensions, as was done for estimating communication costs. The identification
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Figure 5.6: Identification of the secondary pair of dimensions

of the secondary pair is trivial when both the arrays have two or fewer dimensions, as shown in
Figure 5.6. The solid lines in the figure link primary pairs, and the dotted lines link secondary
pairs. The solid circles denote actual array dimensions, while the dotted circles denote missing

dimensions.

If any array in the given pair of references has three or more dimensions, and if there is
only one primary pair, there is more than one choice available for the array dimension that
may form part of the secondary pair. In that case, the compiler selects one of the dimensions
(other than the one constituting the primary pair) which “exhibits” parallelism somewhere in
the program. A dimension is said to exhibit parallelism if there is at least one reference that
traverses the particular dimension in some parallelizable loop. In order to help in this task, the
setup pass in PARADIGM identifies all such array dimensions. During that pass, whenever the
compiler detects that a statement can be parallelized with respect to a loop (as discussed in
Chapter 3), all array dimensions for which the variation-level of the subscript identifies the
same loop, are marked as exhibiting parallelism. Now if there are two or more candidates to
form part of the secondary pair, the compiler chooses one of them arbitrarily (it picks the first
such dimension). In the rare case when the two arrays have more than three dimensions each,
and also at least three primary pairs, the above procedure is carried out for two dimension pairs

at a time.

Another step to be performed in our procedure for obtaining the quality measures is to
supply the remaining partitioning parameters for the two pairs of dimensions that are assumed
to be distributed. Note that determining the alignment is the very first step, so all other

parameters are unknown at this stage. The compiler obtains the cost estimates under the
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assumption that all array dimensions are distributed in a blocked manner. While the estimates
are obtained as functions of the number of processors in the two mesh dimensions, the numerical
values for the purpose of resolving conflicts are obtained assuming that both pairs of array
dimensions are distributed on an equal number of processors. Thus in this step, the number of
processors in each dimension is assumed to be /N, where N is the total number of processors in
the system. Our experimental results (described in the next chapter) suggest that the resulting
cost estimates, in spite of the inaccuracy due to these assumptions, usually guide the alignment
decisions in the right direction.

\

Example Consider again the statement shown in Figure 5.2, where the arrays A and B
have sizes n x n and n x 3n respectively. There are two primary pairs corresponding to
alignment constraints: (i) A; and Bs, and (ii) Az and B;. The communication cost estimator
is first invoked for the case when these dimensions are aligned appropriately, and distributed
in a blocked manner on Ny = VN processors each. The cost estimator finds each pair of
sub-references satisfying the strictly synchronous property. Hence the data movement is

detected as being internalized, and the cost estimate returned is zero.

Next, the relative alignment of the two pairs of dimensions is swapped in the data partition-
ing information supplied to the communication cost estimator. This time, the cost estimator
finds each pair of sub-references (corresponding to A; and B, and to A; and B;) varying in
the same loop, the i-loop. The expression j represents a subscript of the type single-index,
but with a different value of variation-level than the subscript expression i, and hence is
regarded as a constant in the i-loop. As shown in Table 4.3, the cost estimator tests for the
k-synchronous property between the sub-references (A(%,j),1) and (B(j,3 * ¢),2). The two
sub-references are found to be 1-synchronous, and hence the communication term obtained is
Transfer(n/N7). To account for the tiling of the j-loop, this term is modified to give the final
communication cost estimate as Ny * Transfer((nxn)/(Ny* N;y)). The quality measure assigned

to each of the two alignment constraints is 0.5 * Ny * Transfer((n * n)/(Ny * N1)).

For each alignment constraint on a pair of dimensions, the compiler introduces an edge

between the corresponding nodes in the CAG. The quality measure obtained for that constraint
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is recorded as the weight on the edge. If an edge already exists corresponding to the alignment
constraint to be recorded, the quality measure value is simply added to the existing value of the
weight on that edge. Once the entire program has been analyzed in this manner, the compiler

obtains a solution to the alignment problem.

5.1.3 Determination of Distribution Parameter

The component alignment problem has been shown to be NP-complete, and a heuristic al-
gorithm is given in [48]. PARADIGM uses a similar algorithm, so we shall just give a brief

description here.

1. Sort all the columns (each column refers to the collection of nodes corresponding to
different dimensions of a single array) of CAG in a non-decreasing order of their number

of dimensions. Let the number of columns (i.e., the number of arrays) be num.
2. For ¢ varying from 2 to num do

(a) Find the optimal weighted matching between the bipartite graph corresponding to
columns C; and C;. Since the number of nodes in each column is usually less than

four, this step can be done by exhaustively considering all possible matchings.

(b) Merge the columns C; and C; into a single column C; by combining the matched
nodes according to the optimal matching. Clean up the CAG by replacing each edge
from a node in the remaining columns to a node originally in C; by an edge to the
corresponding merged node in €, and by replacing multiple edges between nodes

by a single edge with weight equal to the sum of their weights.

All the merges performed between columns represent alignment constraints honored between
dimensions of the corresponding arrays. At the end of the algorithm, each node in C; represents
a class of array dimensions that are mapped to the same processor mesh dimension. Thus, the
information on mapping of array dimensions to processor mesh dimensions becomes known at

the end of the align pass.
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5.2 Method of Partitioning: Blocked/Cyclic

The block-cyclic pass determines for each array dimension, whether it should be distributed
in a blocked or cyclic manner. It is important to note that “blocked” and “cyclic” distributions
are simply two extremes of a general distribution, referred to as blocked-cyclic distribution. The
blocked distribution represents the special case when the block size is set to S/ P, where § is
the dimension size and P is the number of processors. The term “cyclic” distribution normally
refers to the special case of blocked-cyclic distribution, with a block size of one. In this section,
we shall describe the procedure for choosing between these two extreme positions. Later, we
shall describe how further adjustments may be made on the block size of a dimension given a

cyclic distribution.

First, let us clarify the terminology in yet another fuzzy situation. In real programs, the
arrays are often statically declared to have bigger sizes than their actual sizes at run time. For
example, a single dimensional array may be declared to be of the size 1000, but at run time
may have only 800 elements. If it is to be distributed in a blocked manner on 10 processors,
it would be desirable to distribute all the 800 elements equally among those processors. This
can be accomplished by specifying a blocked-cyclic distribution for the array with a block size
of 80, so that the actual 800 elements are distributed in a blocked manner, and the remaining
“non-existent” elements are mapped to the first three processors by the wrap-around. We
regard such distributions also as blocked distributions. For simplicity, the current version of
PARADIGM requires the programmer to supply the actual sizes of all arrays, so that there is no

disparity between the declared and the actual sizes.

We shall now examine the conditions under which there are constraints recorded on indi-
vidual array dimensions for blocked or cyclic distributions. After describing the procedure to
obtain quality measures for those constraints, we shall describe how collective decisions are

taken on the method of partitioning for groups within each class of aligned array dimensions.
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Figure 5.7: Need for blocked distribution

5.2.1 Detection of Constraints

Blocked Distribution

If the distribution of any array dimension on more than one processor leads to communication
between nearest neighbors in that mesh dimension, as shown in Figure 5.7, it clearly indicates
the need for blocked distribution. The use of blocked distribution allows the communication
to be restricted to the elements lying at the boundaries of regions assigned to processors.
If the dependence constraints allow these communications to be carried out independently,
usually the savings are in the associated data sizes of messages. Cyclic distribution of such a
dimension would lead to larger amounts of data being transferred than blocked distribution. If
these communications take place in type-2 loops (due to dependence constraints), the potential
advantages of blocked distribution are even greater. In that case, the choice of cyclic distribution
leads to a larger number of messages to be sent. Given the high start-up costs of sending

messages, the penalties of such a choice can be tremendous.
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Figure 5.8: Need for cyclic distribution

Hence, during the detection phase, the compiler analyzes pairs of sub-references correspond-
ing to aligned dimensions in each assignment statement. If the corresponding subscripts are
of the type single-index and the sub-references satisfy the boundary-communication test de-
scribed in Chapter 4, a constraint favoring blocked distribution is recorded for the rhs array

dimension.

Cyclic Distribution

Usually, the main motivation for distributing an array dimension in a cyclic manner is to
get better load balance for parallelizable computations. Consider an assignment statement in
which the 1hs array gets only partially traversed, as indicated by the filled region in Figure 5.8.
Since the computations are partitioned according to the owner computes rule, using cyclic
distribution with a small block size leads to a more even distribution of computation than using

blocked distribution. That leads to a reduction in the execution time if those computations are

parallelizable.
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doi=2,n
D(i)=F(D(:-1))
enddo

Figure 5.9: References suggesting constraint for blocked distribution

The detection of constraints for cyclic distribution proceeds in the same phase as that
for blocked distribution. For each 1hs array sub-reference in an assignment statement, the
compiler examines the extent to which the subscript varies in the loop corresponding to its
variation-level. The compiler looks for a subscript of the type single-index, i.e., one of
the form aj * j; + B1. Using the terminology from Chapter 3 again, let the corresponding loop
index j; vary from #; to f; in steps of s;, with the range of the loop given by r; = fi — ¢/ + ;.
The extent of traversal of the subscript along the array dimension is given by |a;| * r;. If
the ratio of the extent of traversal to the dimension size is less than a certain threshold (the
value of this threshold is set to 2/3 in the current implementation), and if the given statement
is parallelizable with respect to the loop L;, the compiler introduces a constraint on cyclic

distribution for the given array dimension.

5.2.2 Determination of Quality Measures

The quality measure of a constraint for blocked (cyclic) distribution is an estimate of the penalty

incurred in execution time if the array dimension is instead given a cyclic (blocked) distribution.

Blocked Distribution

Consider the statement shown in Figure 5.9. The analysis of the given pair of references shows
a need for boundary Transfers inside the i-loop, and hence suggests a constraint for blocked
distribution of D;. Given the general blocked-cyclic distribution of D,, the communication cost

for the rhs reference is estimated by the compiler as:
Cost = ([(n — 1)/b1] — 1) * Transfer(1),
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Figure 5.10: Reference suggesting constraint for cyclic distribution

where b, is the block size of distribution of Dy. Let N; denote the number of processors on
which Dj is distributed. The quality measure for the constraint is obtained as the difference
in the communication costs when the block size is 1 (corresponding to cyclic distribution), and
when the block size is [n/N;] (corresponding to blocked distribution). Thus, the compiler

obtains the following value:

Quality measure = (n — 2) * Transfer(1) — ([(n — 1)/([7/N1])] — 1) * Transfer(1)

Cyclic Distribution

As an example of a constraint favoring cyclic distribution, consider the program segment shown
in Figure 5.10. Let the array D consist of n elements. The compiler regards the range of the j-
loop as [n/2]. The extent of traversal of the subscript j over D; during the j-loop is accordingly
determined as [n/2]. Hence, the compiler recognizes the need for cyclic distribution of D in
order to obtain better load balance. Let t denote the estimated computational time for executing
one instance of the given statement. As shown by Equations 3.1 and 3.2 in Chapter 3, the

overall computational cost estimate for the statement is obtained as:
Cost = t*nx*(by *|[n/2]/(N1#b1)] + min(by, [n/2] mod (Ny * b1)))

The quality measure of the constraint is given by the difference in computational cost when
the block size is [n/N;] (for blocked distribution), and when the block size is 1 (for cyclic
distribution). The estimated cost amounts to ¢t x n * [n/N;] for blocked distribution, and to
txn*[n/(2%N;)] for cyclic distribution. This corresponds to PARADIGM estimating the speedup
roughly as N,;/2 for blocked distribution, and N for cyclic distribution, and hence recording a

constraint favoring cyclic distribution, with an appropriate quality measure.
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5.2.3 Determination of Distribution Parameter

So far we have discussed only the requirements of individual array dimensions with regard to
blocked or cyclic distribution. For arrays that cross-reference each other, it is also important
to make sure that their aligned dimensions are given the same kind of partitioning: blocked
or cyclic. Otherwise, the alignment of array dimensions would fail to ensure the intended
alignment of array elements, leading to excessive communication costs that defeat the purpose

of aligning those dimensions.

However, not all the array dimensions that are mapped to the same mesh dimension need
be constrained to have identical methods of partitioning. To determine which array dimen-
sions must satisfy that property, PARADIGM keeps track of the transitive closure of the cross-
referencing (CR) relationships between arrays. Two arrays A and B are said to be CR-related
if there is an assignment statement in the program that has A (B) as its 1hs array, and B (A)
as its rhs array. The setup pass in PARADIGM records this information in the form of disjoint
CR sets, each set consisting of arrays that are directly or transitively CR-related. This is done
using the well-known union and find algorithms {18]. Initially, each array is in a separate CR
set by itself. For each pair of 1hs and rhs arrays A and B in an assignment statement, the
compiler first determines the CR sets containing A and B using the find algorithm. If the two

CR sets are different, they are combined using the union algorithm.

Given the above information, PARADIGM takes collective decisions on the method of par-
titioning for all the array dimensions that are mapped to the same mesh dimension, and that
correspond to arrays in the same CR set. For each such group of array dimensions, the com-
piler compares the sum of quality measures of constraints advocating blocked distribution and
those favoring cyclic distribution, and chooses the one with the higher value. In case of a tie
(for instance, if there are no constraints either way), the compiler chooses blocked partitioning.

Thus, decisions in this pass are considerably influenced by alignment considerations as well.
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5.3 Block Sizes of Distributions

While the compiler makes a choice between the extreme positions of blocked and cyclic distri-
bution during the block-cyclic pass, further adjustments on the block size are made during
the block-size pass. The load-balancing considerations that lead to cyclic distribution often
favor using a block size of one (the smallest possible value) to get a more even distribution
of computation. In this section, we show how the compiler detects and attempts to satisfy
other requirements on the block sizes of distributions. These requirements include relation-
ships between block sizes of aligned array dimensions, that ensure the proper alignment of the

underlying array elements.

We believe that this analysis is sometimes needed when arrays are used to simulate certain
data structures like records, not supported directly by Fortran, or when lower-dimensional
arrays play the role of higher-dimensional arrays. For instance, a linear array of records may
sometimes be represented simply as a 1-D array, where the programmer “knows” that a certain
number of successive elements in the array represent a single logical entity. An example of
that is seen in the mdg program of the Perfect Benchmarks {17], where certain items such
as the velocities and momenta of water molecules are stored in 1-D arrays that contain the
relevant information for each of the three atoms making up every molecule. The block sizes of
distributions of those arrays need to be given values that are thrice the corresponding values

for arrays that store just a single piece of information for each molecule.

The current version of PARADIGM carries out this analysis only for cyclic distributions.
The same ideas can also be used to choose appropriate block sizes for “blocked” distributions,
discussed in the previous section, where the static declarations show bigger dimension sizes
than the actual sizes at run time. However, presently the compiler expects values of the actual
dimension sizes to be supplied by the programmer. The block size for a dimension distributed in
a blocked manner is then determined only by the dimension size and the number of processors

in the corresponding mesh dimension.
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5.3.1 Detection of Constraints

The compiler examines the sub-references corresponding to aligned dimensions for each pair of
1hs and rhs array references in an assignment statement. For sub-references corresponding to
different arrays, if both of the corresponding subscripts are of the type single-index, and have
the same value of variation-level, block-size constraints are recorded as follows. Let the two
subscripts be of the form a; * j; + 81, and az * ji + B2, with wy = |a1|, and we = |az| The block-
size constraint induced by the given pair of sub-references suggests two related requirements,
namely: (i) the block sizes of (distributions of) the two array dimensions should respectively
be multiples of w; and wq, and (ii) the ratio of block sizes of those dimensions should be w; /ws.
The first requirement represents one of the conditions for regularity of data movement in case of
interprocessor communication. The second requirement is essential for proper alignment of the
elements of the two arrays. Both of these requirements are satisfied if the block sizes chosen for

the two dimensions are k *w; and k *wy, where k is an integer, preferably as small as possible.

The block-size constraints and their quality measures are represented by means of an undi-
rected graph, the Block-size Constraint Graph (BCG), that is similar in some regards to the
CAG used for alignment constraints. The BCG has nodes representing array dimensions, and
edges representing the block-size constraints between aligned dimensions. Each edge is marked
with two items of information: (i) the coefficients wy and w; associated with the given con-
straint (our representation identifies the node that each coefficient corresponds to, even though
the edge itself is undirected), and (ii) the value of weight, that is equal to the quality measure

of that constraint.

5.3.2 Determination of Quality Measures

The quality measure of a block-size constraint between two array dimensions is an estimate of
the extra communication cost incurred if the conditions associated with the given constraint
are not met. To obtain estimates for the case when the conditions are satisfied, the compiler

sets the block sizes of the two dimensions to the values w; and w; respectively, and invokes
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doi=1,n
A(3) = F(B(3 *1))
enddo

Figure 5.11: References suggesting block-size constraint

the communication cost estimator. However, for the situation when the conditions are not
satisfied, there are numerous possibilities regarding the block sizes of those dimensions. The
compiler needs to make a “reasonable” choice among those possibilities to model the effect of

the constraint not being honored.

The default block size given to dimensions in the absence of any block size constraint is 1.
Hence if either of wy or wo is not equal to 1, the compiler sets the block size of both dimensions
to 1 while obtaining cost estimates for the case when the constraint is not satisfied. If both wy
and w, are equal to 1, the compiler sets the block size of the 1hs dimension to 1, and uses an
arbitrary value (two) for the block size of the rhs dimension to model the situation when the

constraint is not satisfied.

Consider the statement shown in Figure 5.11. Let the sizes of the dimensions 4; and B,
be n and 3 * n respectively, and let them be distributed in a cyclic manner on N processors.
There is a constraint recorded between A; and B; that requires their respective block sizes to
be k * 1 and k * 3 for a small integer k. To obtain the quality measure, the communication
cost estimator is first invoked with the block size of A; set to 1, and of B; set to 3. The data
movement is completely internalized in that case, and the communication cost returned is zero.
The situation when the constraint is not satisfied is created by setting both the block sizes to
1. In this case, the cost estimator is unable to detect any regularity in the data movement, due
to the block size of By not being a multiple of 3 (as discussed in Chapter 4). Therefore, the
cost estimator assumes the use of repeated Transfers inside the i-loop, and returns an estimate
of n * (1 — 1/N;) * Transfer(1). Since the cost estimate in the other case is zero, this term also

gives the quality measure of the constraint.
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Each new block-size constraint corresponding to a pair of dimensions is recorded as an edge
in the BCG. The edge is marked with the associated coefficient values w; and ws, and the
value of quality measure is recorded as the weight on that edge. If at a certain point in the
program, an edge already exists in the BCG corresponding to a constraint to be recorded, the
compiler examines the relationship between the coefficients w} and w3 on the existing edge,
and the coefficients w} and w} associated with the present constraint. If wf/w$ = wi' /w3, the
two constraints are consistent. In this case, the compiler computes the value of lem(wf,w})
(the lowest common multiple of w{ and w}). The coefficients on the edge are changed to
lem(w?,w}) and (w§ * lem(wf,w]))/ws respectively, and the value of quality measure for the
present constraint is added to the weight on the existing edge. If on the other hand, wf/wj #
w}/w}, the two constraints are not consistent with each other. In that case, a separate edge

with its own values of coefficients and weight is introduced between the same pair of nodes.

5.3.3 Determination of Distribution Parameter

We now describe the algorithm that takes into account all block-size constraints, and obtains
the block sizes for all the array dimensions with cyclic distributions. The objective is to select
the block sizes such that the sum of quality measures of constraints that are not satisfied is
minimized. The following theorem indicates a sufficient condition for the absence of conflicts

among constraints.

Theorem 5.1 The conditions associated with all of the block-size constraints in the program

can be satisfied if there are no cycles in the BCG.

Proof: The absence of cycles implies that there are no multiple edges between any pair of nodes
in the BCG. Hence, by our method of construction of BCG, there are no direct conflicts between
block-size requirements on a pair of dimensions due to any two constraints. We shall now prove
the absence of indirect conflicts as well, by presenting an algorithm that constructs a solution

for such a BCG.
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Each component (connected component) of the BCG forms a tree, since there are no cycles
in the graph 1. For each tree, the following algorithm selects the block sizes corresponding to

all its nodes (i.e., the array dimensions associated with those nodes) such that every block-size

constraint between them is satisfied.

1. Choose an arbitrary node r in the tree, and any edge incident on that node. Set the block

size of the node r to the value of the coefficient w; marked for r on the edge.

9. For each node v visited in a preorder traversal starting from node r do

(a) Let by be the block size of the previous node p (keep track of the last node vis-
ited). Let w; and w, be the values of coefficients associated with the nodes p and v

respectively on the current edge.

(b) If by * wy is perfectly divisible by w,, set the block size b2 of node v to (by * w2) /w1,
and go to the next step. Otherwise, set I to lem(b; * wz,w:); set the block size of v
to I/wy; for each of the node visited so far (from r to p), multiply its value of block
size by {/(by * w2).

It can be seen that the assignment(s) made to block size(s) in Step 2 (b) at the time of
traversal of each edge ensure that the following condition is satisfied for every edge traversed so
far: the block sizes of the two nodes connected by the edge have values that can be expressed as
k+w; and k+*w, respectively, where k is an integer, and wy and w; are the values of the coefficients
recorded for that edge. Thus, the application of the above algorithm to each component of the
graph BCG results in an assignment of block sizes that satisfies all of the block-size constraints.

a

In general, the BCG for a program may have cycles that introduce conflicts between block-
size constraints, as shown in Figure 5.12. These conflicts may be (i) direct, as shown by the
presence of multiple edges between a given pair of nodes, or (ii) indirect, as shown by cycles
involving more than two nodes (the presence of such cycles is a necessary, and not a sufficient

condition for an indirect conflict). The first problem is dealt with by retaining only one edge

!The BCG has at least as many components as the number of mesh dimensions.
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Figure 5.12: Conflicts between block-size constraints

between any pair, the one with the highest weight, and deleting all other edges between that
pair.

Let us explain how PARADIGM deals with the second problem. The objective of the conflict
resolution strategy is to disregard those conflicting constraints that have the smallest value of
quality measure associated with them. In the context of BCG, that translates to removing those
conflicting edges from each cycle that have the smallest weight on them. We have already shown
that if each component of a BCG is a tree, all of the block-size constraints corresponding to the
edges in that tree can be satisfied. This suggests that the compiler should identify trees that
include the “heavy” edges. Hence, for each component of BCG, the compiler finds a mazrimum
cost spanning tree, i.e., one for which the sum of weights on the edges is maximum. The
algorithm used for this purpose is one obtained by a trivial modification of Prim’s algorithm
[58, 18] for finding a minimum cost spanning tree. Once the spanning tree is obtained, the
block sizes for (the dimensions corresponding to) the nodes in the graph are determined by
applying the algorithm shown above in the proof of Theorem 5.1. The block size for each other

dimension with a cyclic distribution is set to 1, by default.

5.4 Number of Processors in Mesh Dimensions

The only data partitioning parameters that are left unknown at the beginning of the num-procs

pass are the number of processors in different mesh dimensions. The num-procs pass attempts
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to determine these parameters such that the expected parallel execution time of the program
is minimized.

The structure of this pass is slightly different from that of other passes, due to the different
nature of the optimization problem to be solved. In this case, the constraints do not suggest
definite values of the distribution parameters (i.e., the number of processors in various mesh
dimensions) for getting good performance. Hence, the notion of selecting certain constraints
to be honored, is absent from the optimization process. Correspondingly, the quality measures
of these constraints are defined in terms of the expected execution time, rather than the per-
formance penalty, and are expressed as functions of the number of processors in different mesh
dimensions. The quality measures of sequentialization constraints, that recommend sequential-
izing an array dimension to eliminate interprocessor communication, are expressed as functions

that evaluate to zero if the number of processors is set to one.

5.4.1 Recording of Constraints and Quality Measures

In this phase, the compiler analyzes each assignment inside a loop, to an array element, or to
a scalar involved in a reduction operation. Both the computational and the communication
cost estimators are invoked, and the sum of those estimate terms gives the contribution of the
statement to the expected program execution time. Since all other data partitioning parameters
are known at this point, these terms are functions only of the number of processors in different

mesh dimensions.

The sum of contribution terms from all statements examined by the compiler yields the
relevant part of the expected program execution time, that drives the selection of the number
of processors. For the most part, these terms are determined only once. They are simply re-
evaluated with different values for number of processors, in different steps of the optimization
process. However for estimating the communication costs of statements with certain kinds of
references as described in Table 4.3 of Chapter 4, the precise value of the block size, and hence,

of the number of processors (in case the dimension is distributed in a blocked manner) is needed.
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For such references, the communication cost terms are determined repeatedly in different steps

of the optimization process described below.

5.4.2 Determination of Distribution Parameter

PARADIGM currently determines an appropriate data partitioning scheme for eractly the num-
ber of processors, NV, specified as available in the system. It is well-known that for any program
operating on a fixed data size, increasing the number of processors (on which the program is
partitioned) beyond a certain point causes a degradation in performance due to higher com-
munication overheads. Hence, another flavor of the data partitioning problem would be one
where given a value of N, the compiler also has to determine N !’ the number of processors on
which data should be distributed. For that problem, the algorithms described below can easily

be extended to explore the search space over N' that varies from 1 to N.

Reduction of Number of Mesh Dimensions

In the preceding passes, each dimension of an array is assumed to be distributed on a distinct
mesh dimension, and hence, potentially on more than one processor. Clearly, mesh dimensions
in which excessive communication take place, and those in which not much parallelism is ex-
hibited during the program, need to be collapsed into a single processor. In order to reduce
the amount of search space, PARADIGM sequentializes all except for two (at most) dimensions

of each array. Thus, the target topology is finally configured as a 1-D or a 2-D mesh.

We believe that for most scientific application programs, restricting the number of dis-
tributed dimensions of a single array to two does not lead to any loss of effective parallelism.
In a comprehensive study of Fortran programs [70], Shen et al. reported finding only 8% of the
array references with more than two dimensions, and only 1% with more than three dimensions.
Even when higher-dimensional arrays show parallelism in each dimension, restricting the num-
ber of distributed dimensions does not necessarily limit the extent to which parallelism can be

exploited. For instance, the statement shown in Figure 5.13 has references to three-dimensional
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dok=1,n
doj=1,n
doi=1,n
enddo
enddo
enddo

Figure 5.13: References to higher-dimensional arrays in parallelizable loops

arrays, and appears in a completely parallelizable loop nest. However with a fixed number of

processors, roughly the same speedup would be obtained whether we distribute two or three
dimensions of the arrays Y and Z.

If the value of D (the maximum dimensionality of any array in the program) is greater than

two, the compiler selects D — 2 of the mesh dimensions to be collapsed. This is done through

the following steps:

1. For a given set of aligned array dimensions, the compiler examines the field recorded for
each array dimension during the setup pass, that indicates whether the array dimension
exhibits parallelism somewhere in the program. If none of the array dimensions in the
set exhibits parallelism, the mesh dimension to which they are mapped is collapsed into a
single processor. For the purpose of obtaining performance estimates during the remainder
of this pass, the parameter representing the number of processors in that dimension is set

to one. This step is repeated for all of the D sets of aligned array dimensions.

2. Let the number of dimensions that have not been collapsed at the end of the previous
step be D’. This step is required only if D’ > 2. The estimates for times spent on
computation and on communication are available to the compiler as functions of the pa-
rameters N1, Na,...Np:, representing the numbers of processors along the corresponding
mesh dimensions. The compiler evaluates the expected execution times of the program
for CP' cases (CP' is the number of ways of choosing 2 items from D’ items), each case

corresponding to two different N; variables set to v/ N, and the other D’ — 2 variables set
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to 1. The case which yields the smallest value for expected execution time is chosen, and

the corresponding D’ ~ 2 dimensions are collapsed.

Search for Mesh Configuration

At this point, there are at most two mesh dimensions that have not been collapsed. If there is
only one such dimension left, the number of processors in that dimension is set to N, and that

marks the end of the num-procs pass.

If the number of mesh dimensions is two, the only parameters left unknown in the partition-
ing scheme are N; and N, the number of processors in those dimensions. The two parameters
are related by Ny * N3 = N. The compiler evaluates different mesh configurations corresponding
to values of N; varying from 1 to N, and being doubled in each step (assuming N is a power of
two). The expression for the expected execution time is evaluated for each configuration, and

the one that leads to the smallest expected execution time is selected.
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CHAPTER 6

EXPERIMENTAL RESULTS

The methodology we have described for automatic data partitioning has been implemented as
part of the PARADIGM system. Our system accepts Fortran 77 programs and determines the
partitioning scheme to be used for all the arrays in them. In this chapter, we present the results
obtained by PARADIGM on some Fortran codes taken from the Linpack and Eispack libraries,

and the Perfect Benchmarks [17].

PARADIGM has been designed to be largely machine-independent. There is a small machine-
dependent part that supplies the cost metrics of various operations used in the local computa-
tions, and of high level communication primitives supported on the target machine. Clearly, the
validation of the ideas underlying our approach has to be done on a real machine. The testbed

used for the implementation and evaluation of our system is the Intel iPSC/2 hypercube [5].

The final measure of success of any automatic data partitioning scheme is the performance
of the resulting compiler-generated parallel program on the target multicomputer. However,
most of the compilers that carry out the task of generating data-parallel programs, given the
sequential program and data partitioning information, are still under development. Hence
currently, the validation of results through actual program performance is a very tedious process.
It requires manual development of different versions of the parallel program with message

passing, corresponding to different data partitioning schemes.

For the sake of evaluation of our approach, we have gone through this effort for three of

the programs. We have developed multiple parallel program versions corresponding to different
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data partitioning schemes. For those programs, we shall show the actual performance results
of different versions on the iPSC/2. For the remaining programs, we shall only show the data
distribution scheme determined by the compiler, and explain the rationale behind some of the
choices of data distribution parameters. A more rigorous evaluation would be possible once
sophisticated compilers for multicomputers become available. For the present, we believe even
these results are quite significant, since the compilers have widely been regarded as incapable

yet of taking good data partitioning decisions.

6.1 Methodology

The results we report on data partitioning are obtained using the version of PARADIGM supplied
with information on the cost metrics for the iPSC/2. All of the results are obtained for a 16-
processor system. For some of the programs in which the choice of partitioning scheme is
influenced considerably by the data size, we present results for different data sizes used. The
information on the size of each array is added to each program, in case the original program

does not have that information.

The current version of PARADIGM does not perform interprocedural analysis. Therefore,
programs with procedure calls are first transformed through in-line expansion of procedure
calls. In order to obtain results for some of the larger programs, we have selected the routines,
based on profiling information, in which the program spends the maximum amount of time.

These routines are then analyzed by PARADIGM as separate entities.

The source listing of the final version of each program is being provided for the sake of
clarity, and to allow further evaluation of these results in future. Two of the programs are

shown in Figures 6.1 and 6.4. The remaining programs are listed in Appendix I.
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6.1.1 Application Programs

Results are presented on six Fortran programs of varying complexity. The smallest program is
Jacobi, a simplified version of a relaxation code that performs Jacobi iterations in a loop. The
second program is tred2, a routine taken from the Eispack library. It reduces a real symmetric
matrix to a symmetric tridiagonal matrix, using and accumulating orthogonal similarity trans-
formations. The next program is dgefa, taken from the Linpack library. It factors a real matrix
using gaussian elimination with partial pivoting. This program makes calls to some other Lin-
pack routines. Hence, the version we use is a transformed one where procedure in-lining has

been done by hand.

The remaining three programs are individual procedures taken from the Perfect Benchmarks.
0lda is the dominant procedure in the trfd program that simulates the computational aspects
of a two-electron integral transformation. A profile of the sequential version showed the trfd
program spending more than 98% of its time in the olda routine. The routines dflux and eflux
are two of the three most important procedures (in terms of time spent) of the £1052 program.
Flo62 is a two-dimensional code that analyzes the transonic inviscid flow past an airfoil by
solving the unsteady Euler equations. The other important procedure in that program, psmoo
is a much simpler piece of code, and uses only one array. Hence, we have chosen to illustrate

our methodology for the above, more interesting routines.

6.1.2 Machine-Specific Information

We now describe the information assumed regarding the performance characteristics of the
iPSC/2 machine, as supplied to the compiler. The following approximate function [33] is used

to estimate the time taken, in microseconds, to complete a Transfer operation on m bytes :

350+ 0.15xm if m < 100
Transfer(m) =

700 + 0.36 * m otherwise
Note that our examples usually express the message sizes in terms of the number of words. A

double-precision floating point number occupies eight bytes of storage.
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L Primitive [ CostoniPSC/2 |
Reduction(m, p) [log,(p)]* Transfer(m)
Shift(m) 2« Transfer(m)
OneToManyMulticast(m,p) | [logy(p)]* Transfer(m)
ManyToManyMulticast(m, p) | (p — 1)* Shift(m)
Scatter(m, p) (p — 1)* Transfer(m)
Gather(m, p) (p — 1)* Transfer(m)

Table 6.1: Costs of collective communication primitives on the iPSC/2

The cost metrics used for the collective communication primitives are shown in Table 6.1,
where they are expressed in terms of the time to carry out a Transfer primitive. The parameter
p denotes the number of processors over which the primitive is carried out. Both Reduction
and OneToManyMulticast take logz(p) steps with tree-based algorithms. A Shift operation
involves each processor sending data to its neigboring processor, and receiving data from another
neighboring processor in the other direction, and hence is modeled as taking time equivalent
to two Transfers. A ManyToManyMulticast over a group of p processors can be done via
p — 1 Shifts using a ring-based algorithm. A Scatter operation is implemented as a sequence
of Transfers, where the source processor sends different pieces of data individually to the p — 1
other processors. Similarly, a Gather primitive involves p — 1 processors sending data to one
processor. In case a different algorithm is used for any of these primitives, the cost measures

can be modified appropriately.

The double-precision floating point performance of a single node of iPSC/2 has been reported
at 0.2 MFlops [5]. Hence for the computational costs, each double precision floating point add
or multiply operation is assumed to take 5 microseconds. The floating point division is assumed
to be thrice as expensive. To obtain the costs of referencing variables, the compiler uses a simple
model, and does not attempt to estimate the extent of usage of registers or cache memory. The
compiler assumes that each load and store operation takes 0.5 microseconds each. The timing

overhead associated with various control instructions is ignored.
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6.2 Data Partitioning Schemes

We now describe the data distribution schemes determined by PARADIGM for different programs.

We have chosen the tred2 program to illustrate the operation of different data distribution

passes in greater detail, since tred2 is a small yet reasonably complex program that defies easy

determination of the “best” data partitioning scheme by simple inspection.

6.2.1 Application 1: TRED2

The source code of tred2 is listed in Figure 6.1. The program uses four different arrays. The

arrays A and Z are two-dimensional, while D and E are one-dimensional.

Alignment The first step relating to data distribution is the determination of alignment

between array dimensions. The Component Affinity Graph (CAG) built by PARADIGM based

on the alignment constraints in different parts of the program is shown in Figure 6.2. The

symbolic expressions corresponding to the edge weights on CAG are shown below:

C1

C2

c3

Cq

Cs

Ce

[0.5 + (N1/2) * Transfer((n * n)/N) — 0] (line 3)

[0.5 % (N1/2) * Transfer((n * r)/N) — 0] (line 3)

[Transfer(n/N;) — (1 — 1/N) = Transfer(n/Ny)] (line 4)

[(r — 1) * (n/2) * Transfer(n/N;) — (n — 1) * (n/2) * (1 — 1/Ny) * Transfer(n/N1)]
(line 58) + [(n — 1) * Transfer(n/N;) — (n — 1) * (1 — 1/Ny) * Transfer(n/Ny)] (line 71) +
[(n — 1) * ([N1/4] + 1) * Transfer(n/Ny) —

(n — 1) * OneToManyMulticast(n/Ny, (| N1/4] + 1))] (line 77)

[(n=1)*(n/2) % (1 — 1/N) * Transfer(1) — (n — 1) * (n/2) * (1 — 1/N;) * Transfer(1)]
(line 18) + [(n — 1) * (n/2) * (1 = 1/N) * Transfer(1) —

(n - 1)*(n/2)* (1 = 1/Ny) * Transfer(1)] (line 59) + [Transfer(n/Ny) —

(1 = 1/Ny) * Transfer(n/Ny)] (line 83)

[((n—=1)*(1~1/N)« Transfer(1) — (N7 — 1) * Transfer(1)] (line 16) +
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posi=1,N 45 CONTINUE
DO3J=| N 46 F = 0.000
Z(J,1) = QD 47 DOS0J=1,L
D(l) = A(N,]) 48 E(J) = E(J)/H
CONTINUE 49 F=F+E({J)* D)
IF (N .EQ. 1) GO TO 82 50 CONTINUE
DO63It=2, N 51 HH=F/(H+H)
j=aN+2-1l 52 DO53J=1,L
Lml-1 53 E(J) = E(J) - HH * D)
H = 0.000 54 DO61J=1,L
SCALE =0.0D0 55 F = D)
IF(L.LT.2)GOTO 186 56 G = E()
DO14K=1,L 57 DOSBK =4, L
SCALE = SCALE + DABS(D(K)) 58 Z(KJ) = Z(KJ) - F * E{K) - G * D(K)
IF (SCALE .NE. 0.0D0) GO TO 23 59 DW) = Z(LJ)
E(l) = D(L) 60 Z(l,J) =0.000
DO21J=1,L 61 CONTINUE
DY) = Z(L.J) 62 D(l) = H
2(1,J) = 0.0D0 63  CONTINUE
Z(J,l) = 0.000 64 DOB811=2,N
CONTINUE 65 L=l-1
GO TO 62 66 Z(N,L) =Z(L,L)
DO25K=1,L 67 Z(LL) = 1.000
D(K) = D(K) / SCALE 68 H = D{l)
H=H + D(K) * D(K) 89 IF (H .EQ. 0.000) GO TO 78
CONTINUE 70 DO71K=1,L
F = D(L) 7 D(K) = Z(K.))/H
G = -DSIGN(DSQRT(H),F) 72 DO78J=1,L
E(l) =SCALE* G 73 G =0.0D0
H=H-F*G 74 DO75K=1,L
D(L)=F-G 75 G =G +Z(Kl)* Z(KJ)
DO33Ja=t,L 76 DO78Kat, L
E(J) = 0.0D0 77 Z(KJ) = Z(KJ) - G * D(K)
DO45J=1,L 78 CONTINUE
Fa D(J) 79 DOBOK=1,L
ZJ)=F 80 Z(K,}) = 0.000
G=E(J)+Z(JJ)*F 81  CONTINUE
JP1ad+1 82 DO85I=1,N
IF(L.LT. JP1) GO TO 43 83 D(1) = Z(N,I)
DO 43K =JP1, L 84 Z(N,}) =0.0D00
G =G + Z(KJ) * D(K) 85  CONTINUE
E(K) = E(K) + Z(KJ) * F 86  Z(N.N)=1.000
CONTINUE 87  E(1)=0.000
EW)=G 88 END

Figure 6.1: Source code of tred2 routine
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Figure 6.2: Component Affinity Graph for tred2

[(n = 1) + Transfer(n/Ny) — 0] (line 53)
¢r = [(n-1)+(n/2) Transfer(n/Ny) — (n — 1) % (n/2) * (1 — 1/Ny) * Transfer(n/N: )]

(line 42) + [(n — 1) % (| N1/4] + 1) * Transfer(n/Ny) —

(n — 1) * OneToManyMulticast(n/Ny, (| N1/4] + 1))] (line 58)

Along with each term, we have indicated the line number in the program that leads to the
corresponding constraint. The total number of processors is denoted by N. At this stage, the

mesh of processors is assumed to be configured as Ny x N1 mesh, where Ny = V'N.

The CAG for tred2 shows conflicting requirements on alignment from different parts of
the program. For example, the references in statements 58, 71 and 77 favor alignment of D,
with Z;, while those in statements 18, 59 and 83 favor alignment of Dy with Z;. This clearly
illustrates the need for good quality measures to guide the compiler in taking such decisions.
In fact, in this case, the best alignment to use may not be immediately obvious to even an
experienced programmer. The algorithm for component alignment groups the array dimensions
into the following classes — class 1 consisting of Ay, Z;, D, E;, and class 2 consisting of A,, Z,.
The array dimensions in these classes are mapped to dimensions 1 and 2 respectively of the

processor mesh.

Method of Partitioning There are numerous statements throughout the program that lead
to constraints favoring cyclic distribution being recorded for array dimensions mapped to both

the mesh dimensions. For example, statement 53 suggests a constraint on cyclic distribution of
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Figure 6.3: Block-size Constraint Graph for tred2

E,, and statement 60 suggests a similar constraint for Z,. There is only one statement in the
program that favors blocked distribution of any array dimension, namely, statement 16. Note
that the given assignment E(i) = D(l) on that statement appears as E(n+2—ii) = D(n+1—12),
as a result of the induction variable recognition performed by Parafrase-2 [27]. That enables

detection of the constraint favoring blocked distribution of D;.

All of the arrays in the program belong to the same set of CR-related arrays, since they cross-
reference each other in various statements. Hence collective decisions are taken on the method
of partitioning for entire classes of aligned array dimensions. For the array dimensions mapped
to mesh dimension 1, the sum of quality measures of constraints for cyclic distribution is 316.5
seconds (for n = 512, and for N = 16). The quality measure of the lone constraint favoring
blocked distribution in that case is 0.134 seconds. Therefore all those array dimensions are given
cyclic distribution. For array dimensions mapped to mesh dimension 2, the only constraints
recorded are those favoring cyclic distribution. Hence all the remaining array dimensions too

are given cyclic distribution.

Block Size The Block-size Constraint Graph (BCG) constructed for the program is shown
in Figure 6.3. For each edge, we have shown the values of the two coefficients that identify the
block-size requirements of the given constraint. It can be seen that all block-size constraints in
the program have identical requirements that both the Ihs and the rhs dimensions be given block

sizes of the form & * 1. This is due to the fact that every subscript of the type single-index

i.e., of the form ay * j; + a3, has the coeflicient a; equal to +1 or -1. Thus, even though there
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is a cycle in the BCG, there are no conflicts between any block-size constraints. The algorithm

used in the block-size pass assigns a block size of 1 to each array dimension.

Number of Processors Since the maximum dimensionality of arrays in the tred2 program is
two, the machine is initially assumed to be configured as a 2-D, Ny x Nz mesh, with N1*N2 = 16.
Therefore, the first step of collapsing extra dimensions for dealing with higher-dimensional
meshes is not required. The compiler evaluates the expressions for (the relevant part of) the
expected program execution time for different mesh configurations, varying N, from 1 to 16,
doubling its value in each step. The expected execution time consistently drops with an increase
in the value of Ny, its value goes down from 1854.9 seconds for a 1 x 16 mesh to 515.7 seconds

for a 16 x 1 mesh. The compiler selects 16 x 1 as the final mesh configuration, for n = 512.

The final distribution functions determined for all the array dimensions are:

f(Dyi) = f(Eyi) = (i—1)mod16

f(Ar,9) f(24,7)

f(Aza]) = f(Z21J) = 0

This corresponds to the distribution of arrays A and Z by rows in a cyclic manner, and of

arrays D and E also in a cyclic manner, on all the 16 processors.

6.2.2 Application 2: JACOBI

The source code of the Jacobi program is shown in Figure 6.4. This simplified version re-
peatedly carries out relaxation computations followed by copying of array elements to store
the elements computed in the previous step. The two assignment statements involving arrays
suggest identical alignment constraints that lead to A; being aligned with B;, and A2 being
aligned with B;. The data movement for the first of those statements shows nearest-neighbor
communication in the form of Shift operations. The resulting constraints lead to blocked dis-
tribution of all the array dimensions. The final step of determining the values of Ny and N,
namely, the number of processors in each mesh dimension, shows an interesting variation in re-

sults with change in the size of arrays. The contribution of communication costs to the program
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parameter (np2 = 514, ncycles = 100)
double precision A(np2,np2), B(np2,np2)

npl = np2-1
do 10 k = 1, ncycles
do 201 = 2, npl
do 30 j = 2, npl
B(i,j) = 0.5 * A(i,j) + 0.125 * (AG-14) + A(G+1,) +
A(i,j-1) + A(L,j+1))
30 continue
20 continue
do40i = 2, npl
do 50 j = 2, npl
A(iy) = B(id)
50 continue
40 continue
10 continue

Figure 6.4: Source code for Jacobi program

execution time is estimated by the compiler as:

Communication cost = necycles * (2 (Ny > 1) * Shift(n/N3) 4+ 2 x (N2 > 1) # Shift(n/Ny))

Let us consider two mesh configurations, 1 x 16, and 4 x 4. The first of these corresponds
to a column partitioning of the arrays. It leads to two Shift operations being carried out in
every cycle, with a data size of n words each. The second configurations corresponds to a
“2.D” partitioning of the arrays, where both the rows and the columns are distributed on 4
processors each. That leads to four Shift operations in every cycle, each with a data size of n/4
words. For smaller values of n, the first scheme is better, since the start-up costs of sending
messages dominate the communication cost. As the data size is increased, the second scheme
starts becoming more attractive, since the total amount of data transferred is lower under that
scheme. Supplied with different values of n that are doubled in each step, PARADIGM starts

choosing the second scheme at n = 1024.

111



6.2.3 Application 3: DGEFA

The source code of the dgefa routine is shown in Appendix L This code is a transformed
version of the one appearing in the Linpack library. The calls made to other Linpack routines
have been removed by function-inlining, performed by hand. Some of the important loops
where Parafrase-2 is currently unable to infer the absence of loop-carried dependence, have
been explicitly marked as doall. The dgefa program uses two arrays, A and IPVT, which do
not cross-reference each other. In fact, there is no constraint recorded on the distribution of
IPVT, and it is given the default, blocked distribution. There are constraints favoring cyclic

distribution for both dimensions of A, and none suggesting any need for blocked distribution.

The analysis of the program for obtaining the expected execution time shows parallelism
in both the mesh dimensions. The first dimension has a relatively greater amount of interpro-
cessor data movement taking place due to the determination of the pivot element along each
column, multicasting of that pivot element, and the exchange of rows required if the pivot
element belongs to a different row than the one being zeroed in the current step. The two-level
loop performing the update of array elements in each step requires a significant amount of com-
munication in both the mesh dimensions. In that step, a section of the row is multicast to all
the processors along the first mesh dimension, and a section of the column multicast along the
second mesh dimension. This data movement is shown pictorially in Figure 6.5. Both the array
dimensions are shown to have blocked distribution purely for the ease of illustration, actually

they are given cyclic distributions.

The data pa.rt‘itioning scheme for dgefa was obtained for three different data sizes (n taking
the values 128, 256 and 512). For n = 128, the cost terms corresponding to the “extra”
communications in the first mesh dimension lead to the configuration being biased in favor of
a smaller number of processors in the first dimension. The mesh configuration chosen for that
data size is 2 x 8. However, for larger data sizes, a different effect becomes more dominant.
Consider the multicasts being carried out along the second dimension. as shown in Figure 6.5.
All of these multicasts, corresponding to different positions along the first dimension, take place

in parallel. Given a fixed array size, reducing the number of processors in the first dimension
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dim 1

Oy R

Figure 6.5: Data movement for updates of array elements in each step in dgefa

leads to an increase in the cost of this data movement, due to fewer parallel multicasts that now
involve a bigger data size. Thus, at larger data sizes, minimizing the sum of costs of multicasts
along both the dimensions requires the number of processors to be evenly balanced between
both the dimensions. The configuration chosen for both n» = 256 and n = 512 is a 4 x 4 mesh,
though in the first case, the expected excution time is only marginally higher than that for a 2

x 8 configuration. In summary, the distribution functions chosen for the array A are:

f(A1,i) = (i-1)mod2, f(A2,7) = (j—1)mod8, forn =128

f(A1,i) = (i-1)mod4, f(A2,7) = (j—1)mod4, forn > 128

6.2.4 Application 4: OLDA

0lda is the dominant routine in the trfd program of Perfect Benchmarks. The original routine
uses nine arrays, some of which are aliases of each other (due to identical actual arguments
being used for the corresponding formal parameters in the only call to olda in the program).
We have factored in that information by directly modifying the source code, replacing multiple

names corresponding to aliased arrays by a single name. The final version of the code as
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supplied to the compiler is shown in Appendix L. The distribution functions for various arrays

are determined by the compiler as follows:

f(XIJ,i) = f(XRSPQy,i) = (i—1)mod 16

f(XRSIQy,i) = f(Va,?)

f(XRSIQ2,5) = f(Vi,j) = 0

Some pertinent sections of this program have been presented earlier in Section 2.2, where we
introduced the notion of constraints on data distribution. In that discussion, we described some
of the references that lead to alignment of X RSIQ, with V3, and of XIJ; with V2, We also
explained why the dimensions X RSIQ, V3, and X1J; are given cyclic distribution.

Here we report on some additional experiences with this program, that have led to improve-
ments in the handling of subscripts of the type unknown by PARADIGM. Consider the statement,
XRSPQ(mrsij) = XIJ(mj), marked by the label ‘80’ in the program. If the compiler treats
mrsij as a subscript of the type unknown, the communication primitive obtained for the data
movement is ManyToManyMulticast. A similar statement appears in the program, marked by
the label ‘280°. The resulting communication costs for those statements represent a significant

part of the program execution time.

With an improved characterization of subscripts (described in Section 3.1), the compiler
actually performs a better analysis. The pass for induction variable recognition in Parafrase-2

recognizes the following relationship:
mrsij = (—mi + mi * mi+ 2 *mj + 1640 * mrs — 1640)/2

Hence, the setup pass in PARADIGM finds the 1hs reference with mrsij replaced by the above
expression. Note that mj, mi, and mrs are loop indices at levels 3, 2, and 1 respectively.
Thus, the subscript is of the form a; * mj + z, where a; = 1, and z is an expression with a
variation-level of 2. The subscript is regarded as being of the type single-index in the
mj-loop. The communication is placed outside the mj-loop, and the compiler now recognizes
the possibility of using Transfers to implement the data movement. That leads to much lower

communication costs for the given statement.
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[ Array | Size | Distribution Functions |

FS 103 x33x4 | [(i—1)/16],0,0
W 194x34x4]| |(i—1)/16/,0,0
FW | 193x33x4 | |(i-1)/16],0,0
DW | 194x34x4| [(:—1)/16],0,0
DP | 105x35 (i—1)/16],0
RADJ | 194 x 34 [(i—1)/16], 0
DTL |194x 34 (i —1)/16], 0
P 194 x 34 (i = 1)/16], 0
RADI | 194 x 34 (i — 1)/16], 0
VOL | 104x 34 |G = 1)/16],0
EP | 193 x 33 (i —1)/16], 0
DIS4 | 193 x 33 (i = 1)/16], 0
DIS2 | 193 x 33 (i —1)/16], 0

Table 6.2: Distribution functions for arrays in dflux
6.2.5 Application 5A: DFLUX

The source code of the df1lux routine, taken from the £1052 program, is shown in Appendix I.
The distribution functions for various arrays in the program, as determined by PARADIGM,
are shown in Table 6.2. All of the arrays are distributed by rows in a blocked manner on
16 processors. There are numerous constraints that lead to mutual alignment of the first
dimensions of all the arrays, and also of their second dimensions. There are no conflicts between
any two alignment constraints. Similarly, all constraints on the method of partitioning favor
blocked distribution of the first two dimensions of all the arrays. The step reducing the number
of mesh dimensions collapses the one to which the third dimensions of arrays F'S, W, FW and
DW are mapped. The analysis of the expected execution time for the 2-D mesh shows a
number of Shift operations taking place along both the mesh dimensions, at different points
in the program. The cost estimates predict that the best performance would be achieved by
sequentializing the second dimension (which has fewer elements) of all the arrays. We expect
that an increase in the data size and the number of processors in the system would lead to cases
where distributing both the dimensions of each array becomes better, as the communication

costs begin to get dominated by data transfer times rather than the start-up times for messages.
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However, the best mesh configuration would still have fewer processors in the second dimension
than the first, as the first dimension of each array has significantly more elements than the

second dimension.

6.2.6 Application 5B: EFLUX

Eflux is the second routine chosen from the £1052 program. The distribution functions selected

for all the arrays are shown below:

f(X1,i) = f(W,i) = f(DWy,i) = f(FS,9) = f(P,i) = [(i-1)/16]
f(XZ’J) = f(W27.7) = f(DW2,]) = f(FS27.7) = f(P2’.7) = 0
f(X3,k) = f(Ws, k) = f(DW3,k) = [f(FSs, kY = 0

As can be seen from the program listing, the ef1lux routine performs computations quite similar
to those in the dflux routine. Again, there are no conflicts seen between any alignment con-
straints, and all constraints on the method of partitioning favor blocked distribution of array
dimensions. The arrays with identical names in the eflux and dflux routines in fact corre-
spond to the same global arrays in the £1052 program. The fact that both the routines choose
the same distribution functions for them is an encouraging sign for the performance of £1052.
It means that between those two routines, there would be no re-distribution required for the

given arrays.

6.3 Performance Results

In this section, we present results on the evaluation of data partitioning schemes selected for
some of the programs by PARADIGM. This involves developing multiple parallel program ver-
sions corresponding to different partitioning schemes, and comparing the actual performance

of those versions on the iPSC/2.
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6.3.1 Application 1: TRED2

We now describe the results obtained for different data-parallel versions of the tred2 program.
Starting with the sequential program, each version was obtained by hand-simulating the com-
pilation process (corresponding to a sophisticated compiler) on that program, under the given

data partitioning scheme.

As described earlier, the data distribution scheme selected by PARADIGM is — distribute
arrays A and Z by rows in a cyclic fashion, distribute D and E also in a cyclic manner, on all
the N processors. The first version corresponds to this scheme, referred to as row cyclic. The
presence of conflicts in the CAG for tred2 suggests that another reasonable scheme would be
one where the arrays D and E are aligned with the second, rather than the first dimension of
arrays A and Z. If these dimensions are further distributed on all the N processors (to satisfy
constraints to sequentialize those dimensions of A and Z not aligned with D and E), we obtain
a scheme where A and Z are distributed by columns, again in a cyclic manner. That forms the

basis for the second version.

The remaining versions correspond to “bad” choices (according to compiler-generated es-
timates) that might be made on certain data distribution parameters. The third version is
based on a variant of the row-cyclic scheme, where both the rows and the columns of A and
Z are distributed on more than one processor. All other characteristics of the first scheme are
retained, D and E are still aligned with the first dimension of A and Z, and all dimensions
are distributed in a cyclic manner. It is quite possible for a human programmer to choose
such a scheme, which we have referred to as 2-D cyclic. The fourth version is also a variant
on the preferred row-cyclic scheme, where the rows of A and Z (and the arrays D and E) are

distributed in a blocked, rather than cyclic manner.

The programs were run for two different data sizes corresponding to the values 256 and 512
for n. The plots of performance of various versions of the program are shown in Figures 6.6 and
6.7. The sequential time for the program is not shown for the case n = 512, since the program
could not be run on a single node due to memory limitations. The data partitioning scheme

selected by PARADIGM performs much better than other schemes for that data size, as shown
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Figure 6.6: Performance of tred2 on Intel iPSC/2 for data size n = 512

in Figure 6.6. For smaller data size (Figure 6.7), and for fewer than 16 processors, the column-
cyclic scheme performs slightly better. Based on the estimates generated by PARADIGM, this
is not entirely unexpected, given the close conflict between alignment constraints. When all of

the 16 processors are being used, the row-cyclic scheme still performs the best.

All other data distribution decisions too are validated by the results. To recall the decision
process leading to the partitioning of array dimensions in a cyclic manner, the sum of quality
measures of constraints favoring cyclic distribution was about three orders of magnitude higher
than that for blocked distribution. That is confirmed by the relatively poor performance of
the row-blocked scheme. The estimates of program execution times guiding the final selection
of mesh configuration showed the 16 x 1 mesh performing much better than the 4 x 4 mesh,
where both the dimensions of A and Z were distributed. That decision is again confirmed by
the higher execution times obtained by the 2-D cyclic scheme as compared to the row-cyclic

scheme.
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Figure 6.7: Performance of tred2 on Intel iPSC/2 for data size n = 256
6.3.2 Application 2: JACOBI

We now report results on the performance of different versions of the Jacobi program on the
iPSC/2. Our compiler selects a column partitioning for smaller data sizes, and a 2-D par-
titioning (where both rows and columns are distributed on the same number of processors)
for larger data sizes. In each case, the compiler chooses a blocked method of partitioning for
all distributed array dimensions. The first two versions developed by us correspond to these
partitioning schemes. The remaining two versions are based on variants of the above schemes,

where the array dimensions are instead distributed in a cyclic manner.

The execution times obtained for each of those versions running on the 16-processor iPSC/2
are shown in Table 6.3. These results confirm that the 2-D partitioning starts performing better
than the column partitioning for larger array sizes. The excessive communication requirements
resulting from the naive decision to partition the array dimensions in a cyclic manner are re-
flected in the poor performance of the last two versions. Those versions also require much more

space to hold the non-local data received from other processors through collective communi-
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Data Size | Column Blocked | 2-D Blocked | Column Cyclic | 2-D Cyclic
n Time (s) Time (s) Time (3) Time (s)
64 1.28 1.45 1.66 2.15
128 4.10 4.12 - 5.82 7.33
256 15.39 14.87 23.29 28.72
512 64.43 59.66 96.64 113.66
1024 257.84 243.24 386.94

Table 6.3: Performance of different versions of Jacobi on iPSC/2

cation. In fact, the program with 2-D cyclic partitioning could not be run for the data size

n = 1024 due to memory limitations on each processor.

While these results confirm the compiler’s prediction regarding the suitability of the 2-D
partitioning at larger data sizes, the actual data size at which that scheme starts performing
better than column partitioning is not predicted very accurately. We believe that this difference
between the predicted value (n = 1024) and the observed value (n = 256) is due to the cost
function used for the Shift operation being slightly inaccurate. The primary focus of our work
in estimating communication costs has been to obtain the estimates in terms of cost functions of
various communication primitives (which is performed satisfactorily in this case). Given more
accurate performance characteristics of such primitives, obtained by approaches proposed in
the literature, such as the “training set” method [7], we believe our compiler would do an even

better job of selecting good data partitioning schemes.

6.3.3 Application 3: OLDA

The data partitioning scheme chosen by PARADIGM for the olda program has been described
in the previous section. The array X RSIQ is distributed by rows in a cyclic manner, V is
distributed by columns in a cyclic manner, and the arrays XIJ and XRSPQ are also dis-
tributed in a cyclic manner. The first parallel program version we developed corresponds to

this partitioning scheme, referred to as 1-D cyclic. The other version is based on a variant of
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Figure 6.8: Performance of olda on Intel iPSC/2

the first scheme, where all the distributed array dimensions are given a blocked distribution

instead. This method of partitioning is referred to as 1-D blocked.

The performance of the two parallel program versions is shown in Figure 6.8. The sizes of the
arrays are shown in the source listing of olda in Appendix I. The method of partitioning chosen
by PARADIGM, 1-D cyclic, leads to a significantly better performance than the other method.
This confirms the desirability of the decision taken by PARADIGM to distribute all dimensions in
a cyclic manner. There are numerous other methods of data partitioning possible for the olda
program, such as those in which both the dimensions of X RSIQ and V are distributed on more
than one processor, and those in which the alignment between the dimensions of X RSIQ and
V is reversed (X RSIQ; being aligned with V;, and X RSIQ2 with V2). A manual inspection
of the program shows that each of those schemes would lead to much higher communication
overheads, and worse performance. These results show the success of PARADIGM in obtaining

a good data partitioning scheme for the olda program too.
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CHAPTER 7

CONCLUSIONS

In this thesis, we have presented a new approach, the constraint-based approach, to the problem
of automatic data partitioning of programs on multicomputers. We have validated these ideas
through the development of a compiler called PARADIGM, that takes data partitioning decisions
on Fortran 77 programs, to be parallelized and executed on distributed memory machines. Our
approach is quite general, and applicable to a large class of programs having references that

can be analyzed at compile time.

7.1 Contributions

Our main contributions to the problem of automatic data partitioning are:

e Analysis of the entire program: Our approach looks at data distribution from the per-
spective of performance of the entire program, not just that of some individual program
segments. The notion of constraints makes it easier to capture the requirements imposed
by different parts of the program on the overall data distribution. Since constraints as-
sociated with different statements specify only the relevant aspects of requirements on
data distribution, the compiler is often able to combine constraints affecting different
parameters relating to the distribution of the same array. Our studies on numeric pro-
grams confirm that situations where such a combining is possible arise frequently in real

programs.
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e Balance between parallelization and communication considerations: Both communication
and computational costs are taken into account during the selection of data partitioning
scheme. Fach data distribution parameter affecting both components is determined by

an algorithm that is driven by the minimization of the overall program execution time.

e Pruning of the search space: The distribution functions used for arrays allow for a rich
variety of data distributions to be expressed. But, that also leads to a large space of
possible data partitioning schemes, that cannot be searched exhaustively for the optimal
solution. Our approach is significantly different from all others that have so far been
proposed in the extent to which this search space is pruned via heuristics that lead to

independent decisions on numerous distribution parameters.

e General methodology for static performance estimation: To enable the compiler to be
guided by performance estimates in the process of taking data distribution decisions, we
have developed a machine-independent methodology for performance estimation. This
methodology allows estimation of the extent of data-parallelism exhibited, and also the
amount of communication costs incurred by a program with a given data partitioning
scheme, without actually generating the data-parallel program. Such an analysis can be
used not only by a different automatic data partitioning system, but also by a compiler
generating the SPMD program, to evaluate the expected benefits of different competing

optimizations.

o Applicability to compiler-directed generation of communication: As part of estimating the
communication costs of a program, the compiler detects opportunities for optimizations
in generating communication, like combining messages, and using collective communica-
tion primitives. In particular, the techniques we have developed for exploiting collective
communication represent a significant advance over other currently known methods, and
can contribute to substantial improvements in program performance on massively parallel

systems.

o Results on real-life scientific application programs: Finally, we observe that the PARADIGM

compiler has been successfully used to obtain data partitioning schemes for real-life pro-
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grams. To the best of our knowledge, these are the first set of results demonstrating the

success of automatic data partitioning on a significant class of Fortran programs.

Our approach to data partitioning has its limitations too. The permitted set of data dis-
tribution functions is well-suited only to numeric programs with a regular structure. Irregular
computations, such as those involving sparse matrices and unstructured grids are not ade-
quately supported. During the process of obtaining quality measures relating to distributions
of specific arrays, the compiler often ignores possible optimizations like combining messages
corresponding to different arrays. Also, due to the underlying complexity of the problem of
estimating performance, the compiler uses a number of simplifying assumptions. For example,
it ignores the delays due to congestion in the interconnection network, and does not attempt

to characterize the locality of data within a processor, that affects cache performance.

7.2 Future Directions

In this research, we have developed a basic framework for dealing with the problem of automatic
data partitioning on multicomputers. There are a number of directions in which this work can

be extended, some of which are described below:

e Interprocedural analysis : So far, we have used in-line expansion of procedure calls, or
restricted ourselves to individual procedures while analyzing real application codes with
PARADIGM. Clearly, there is a need to develop techniques for interprocedural analysis.
A number of researchers have worked on this problem for improving the effectiveness
of parallelizing compilers [9, 10, 76, 49, 1]. Those ideas need to be extended to allow
determination of constraints and their quality measures across procedure boundaries, and

to summarize such information for data accessed in various procedures.

o Redistribution of data : Currently, PARADIGM assigns a fixed distribution to each array,
that remains unchanged during the entire program. For some programs, it may be desir-

able to partition the data one way for a particular segment, and then repartition it before
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moving to the next segment. This apparently tougher problem (where the distribution
of data is allowed to change) can be mapped to the original problem of obtaining a fixed
distribution, through transformations like array renaming. However, techniques need to

be developed to apply those transformations, where needed, in an automated manner.

Other distribution parameters : Currently, PARADIGM does not attempt to evaluate the
benefits of replicating an array as compared to partitioning it across processors. The
option of replication has so far been restricted to scalars and small arrays, i.e., those
with sizes less than a certain threshold. For many programs, replicating bigger arrays,
particularly the read-only arrays, can lead to considerable savings in communication costs.
However, the compiler would have to take such decisions keeping in mind the memory
limitations on each processor. Thus, it would be interesting to extend the compile-time
analysis to determine which arrays (or array dimensions) to replicate, given a certain

amount of memory.

Another parameter, the offset in the distribution of an array dimension is currently fixed,
it is given a constant value of one for all the dimensions. In some programs, there are likely
to be situations where the desired alignment of elements in two arrays requires different
values to be given to offsets in their distributions. We expect that the techniques we have
developed to determine the block sizes of array dimensions can be extended to obtain the

desirable offset values as well.

Irregular problems : Our research has mainly been directed towards applications with a
regular structure, that are amenable to static analysis. Many researchers have started
developing systems that provide compiler and runtime support for the task of partition-
ing computation and generating communication for irregular problems [67, 44, 13, 14].
It would be interesting to explore possibilities of similar support for decisions on data

partitioning through extensions of our approach.

As an example of a simple extension to our approach, consider the problem of various
array sizes and loop bounds being unknown at compile time. The symbolic expressions

that PARADIGM obtains for the times spent on communication and computation can be
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stored, and code can be generated to evaluate those expressions at run time, and take
decisions on data partitioning accordingly. However, in order to handle irregularities like

unknown data access patterns well, more sophisticated techniques need to be developed.
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APPENDIX I

BENCHMARK PROGRAMS

I.1 DGEFA

30

PROGRAM DGEFA
PARAMETER(N=512)
DOUBLE PRECISION A(N,N)
INTEGER IPVT(N)

DOUBLE PRECISION T
INTEGER J,K,L,NM1,INFO
INFO = 0

NM1=DN-1

IF (NM1 .LT. 1) GO TO 70
DO 60 K = 1, NM1

L=1

DMAX = DABS(A(K,K))

DO 30 I = K+1,N
IF(DABS(A(I,K)).LE.DMAX) GO TO 30
L=I

DMAX = DABS(A(LK))
CONTINUE

IPVT(K) = L
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10

15

35

80

40

50

70

IF (A(L,K) .EQ. 0.0D0) GO TO 40
IF (L .EQ. K) GO TO 10

T = A(L,K)

A(LK) = A(K,K)

A(KK)=T

CONTINUE

DO 151 =K,N

A(LK) = (-1.0D0/A(K,K))*A(LK)
CONTINUE

CDOALL 80 J = K+1, N

T = A(L,J)

A(LJ) = A(K,J)

AKJ) =T

CDOALL 35 I = K+1,N

A(LT) = A(LY) + A(K,J)*A(LK)
CONTINUE

CONTINUE

GO TO 50

CONTINUE

INFO = K

CONTINUE

60 CONTINUE

CONTINUE

IPVT(N) = N

IF (A(N,N) .EQ. 0.0D0) INFO = N
STOP

END
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I.2 OLDA

10

20

30

40

PROGRAM OLDA
PARAMETER(NUM=32,NORB=32, MORB=32,NDIM=32,NUM2=278784)
IMPLICIT DOUBLE PRECISION (A-H,0-Z)
DOUBLE PRECISION V(NDIM,NDIM)

DOUBLE PRECISION XRSPQ(NUM2)

DOUBLE PRECISION XRSIQ(MORB,MORB),XIJ(NUM)
DATA ZERO /0.0D+00/
NRS=(NUM*(NUM+1))/2

NP=NUM

NQ=NUM

MRSIJ0=0

MRSPQ=0

DO 100 MRS=1,NRS

DO 10 MQ=1,NQ

DO 10 MI=1,MORB

XRSIQ(MI,MQ)=ZERO

DO 40 MP=1,NP

DO 30 MQ=1,MP

MRSPQ=MRSPQ+1

VAL=XRSPQ(MRSPQ)

IF(VAL.EQ.ZERO) GO TO 30

DO 20 MI=1,MORB
XRSIQ(MI,MQ)=XRSIQ(MI,MQ)+VAL*V(MP,MI)
XRSIQ(MI,MP)=XRSIQ(MI,MP)+VAL*V(MQ,MI)
CONTINUE

CONTINUE

CONTINUE

MRSIJ=MRSI1J0

DO 90 MI=1,MORB
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50

60

70

80

90

100

110

120

DO 50 MJ=1,MI
X13(MJ)=ZERO

DO 70 MQ=1,NQ
VAL=XRSIQ(MI,MQ)
IF(VAL.EQ.ZERO) GO TO 70
DO 60 MJ=1,MI
XII(MJ)=X1J(MJ)+VAL*V(MQ,MJ)
CONTINUE

DO 80 MI=1,MI
MRSIJ=MRSIJ+1
XRSPQ(MRSII)=X1J(MJ)
CONTINUE
MRSIJ0=MRSIJ0+NRS
CONTINUE
NIJ=(MORB*(MORB+1))/2
MRSIJ=0

DO 120 MRS=1,NRS
MIJRS=0

MAX=MRS
IF(MAX.GT.NIJ) MAX=N1J
DO 110 MIJ=1,MAX
DUM=XRSPQ(MRSIJ+MIJ)
XRSPQ(MRSIJ+MI1J)=XRSPQ(MIJRS+MRS)
XRSPQ(MIJRS+MRS)=DUM
MIJRS=MIJRS+NRS
MRSIJ=MRSIJ+NRS
NR=NUM

NS=NUM

MIJKL=0

MIJRS=0
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210

220
230

240

250

260

270

MIJ=0

MLEFT=NRS-NIJ

DO 300 MI=1,MORB

DO 300 MJ=1,MI

MII=MIJ+1

DO 210 MS=1,NS

DO 210 MK=MI,MORB
XRSIQ(MK,MS)=ZERO

DO 240 MR=1,NR

DO 230 MS=1,MR
MIJRS=MIJRS+1
VAL=XRSPQ(MIJRS)
IF(VAL.EQ.ZERO) GO TO 230

DO 220 MK=MI,MORB
XRSIQ(MK,MS)=XRSIQ(MK,MS)+VAL*V(MR,MK)
XRSIQ(MK,MR)=XRSIQ(MK,MR)+VAL*V(MS,MK)
CONTINUE

CONTINUE

CONTINUE

LMIN=MJ

LMAX=MI

DO 290 MK=MI,MORB

DO 250 ML=LMIN,LMAX
X1J(ML)=ZERO

DO 270 MS=1,NS
VAL=XRSIQ(MK,MS)
IF(VAL.EQ.ZERO) GO TO 270

DO 260 ML=LMIN,LMAX
XIJ(ML)=X1J(ML)+VAL*V(MS,ML)
CONTINUE
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DO 280 ML=LMIN,LMAX
MIJKL=MIJKL+1
280 XRSPQ(MIJKL)=XIJ(ML)
LMIN=1
LMAX=MK+1
290 CONTINUE
MIJKL=MIJKL+MIJ+MLEFT
300 CONTINUE
STOP
END

1.3 DFLUX

PROGRAM DFLUX
PARAMETER (I2=194,J2=34,IL=193,JL=33)
PARAMETER (I2P1=195,]2P1=35)
REAL RADI(I2,J2),RADJ(12,J2),FW(IL,JL,4),RFIL
REAL FS(IL,J2,4),DW(12,J2,4)
INTEGER ISYM
REAL W(I2,J2,4),P(12,]2),VOL(12,J2),DTL(12,]2)
REAL DP(I2P1,J2P1),EP(IL,JL),DIS2(IL,JL),DIS4(IL,JL)
SFIL = 1. -RFIL
FIS2 = .5*RFIL*VIS2
FIS4 = RFIL*VIS4/64.
DO 30 J=2,]L
DO 10 I=2,IL
DP(I,]) = ABS((P(I+1,J) -2.*P(L,J) +P(I-1,3))/
. (P(I+1,3) +2.*P(L,]) +P(1-1,3)))
10 CONTINUE

IF (ISYM.LT.0) GO TO 11
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11

12

14

15

16

17

18

DP(2,J) = 0.

DP(IL,J) = 0.

DP(1,]) = DP(IL,J)
DP(IL+1,J) = DP(2,J)
DP(IL+2,]) = DP(3,J)
DO 12 I=2,IL

EP(L,J) = MAX(DP(I-1,J),DP(1,3),DP(I+1,),DP(I+2,J))

CONTINUE

IF (ISYM.GE.0) EP(IL,J) = 0.
EP(1,]) = EP(IL,J)

IF (VIS0.LT.0.) GO TO 15
DO 14 I=1,IL

FIL = VOL(I+1,])/DTL(I+1,J) +VOL(1,3)/DTL(L,J)

DIS2(1,J) = FIL*FIS2*EP(1,])
DIS4(1,J) = FIL*FIS4

DIS4(1,]) = DIM(DIS4(1,J),DIS2(1, 1))
CONTINUE

GO TO 17

DO 16 I=1,IL

FIL = RADI(I+1,J) +RADI(LJ)
DIS2(1,J) = FIL*FIS2*EP(L,J)
DIS4(1,J) = FIL*FIS4

DIS4(1,J) = DIM(DIS4(1,J),DIS2(1,J))
CONTINUE

DO 18 N=1,4

DO 18 I=1,IL

FS(I,]1,N) = W(I+1,],N) -W(I,],N)
CONTINUE

DO 20 I=1,IL

FS(1,J,4) = FS(1,3,4) +P(1+1,3) -P(1,J)
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20

25

26

27

28

30

38

40

CONTINUE

DO 30 N=1,4

IF (ISYM.LT.0) GO TO 25

FS(1,J,N) = FS(2,1,N)

FS(IL,J,N) = FS(IL-1,],N)

FS(12,J,N) = FS(2,J,N)

DO 26 1=2,IL

DW(L,J,N) = FS(I+1,J,N) -2.*FS(L,J,N) +FS(I-1,3,N)
CONTINUE

IF (ISYM.LT.0) GO TO 27

DW(IL,J,N) = 0.

DW(1,J,N) = DW(IL,J,N)

DO 28 I=1,IL

FS(L,J,N) = DIS2(1,J)*FS(LI,N) -DIS4(1,J)*DW(LJ,N)
CONTINUE

DO 30 I=2,IL

FW(L,J,N) = SFIL*FW(L,J,N) -FS(I,],N) +FS(I-1,J,N)
CONTINUE

DO 38 J=3,JL

DO 38 1=2,IL

DP(I,J) = ABS((P(I,J+1) -2.*P(L,J) +P(LJ-1))/

. (P(L,J+1) +2.*P(L,]) +P(1,J-1)))

CONTINUE

DO 40 I=2,IL

DP(I,1) = 0.

DP(1,2) = 0.

DP(I,JL+1) = 0.

DP(I,JL+2) = 0.

CONTINUE

DO 42 J=2,JL
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42

44

45

46

47

48

50

DO 42 I=2,IL

EP(L,J) = MAX(DP(1,J-1),DP(,J),DP(1,J+1),DP(1,]+2))

CONTINUE

EP(1,1) = EP(1,2)

IF (VIS0.LT.0.) GO TO 45
DO 44 J=1,IL

DO 44 1=2,IL

FIL = VOL(I,J+1)/DTL(L,J+1) +VOL(L,J)/DTL(LJ)

DIS2(I,J) = FIL*FIS2*EP(L,J)
DIS4(1,J) = FIL*FIS4

DIS4(I,J) = DIM(DIS4(1,J),DIS2(1,7))
CONTINUE

GO TO 47

DO 46 J=1,JL

DO 46 1=2,IL

FIL = RADIJ(I,J+1) +RADJI(1,J)
DIS2(1,J) = FIL*FIS2*EP(1J)
DIS4(1,J) = FIL*FIS4

DIS4(1,]) = DIM(DIS4(1,3),DIS2(1,))
CONTINUE

DO 48 N=1,4

DO 48 J=2,]L

DO 48 I=2,IL

FS(LJ,N) = W(I,J+1,N) -W(L,J,N)
CONTINUE

DO 50 J=2,JL

DO 50 1=2,IL

FS(I,],4) = FS(1,J,4) +P(L,I+1) -P(1,J)
CONTINUE

DO 60 N=1,4
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54

56

58

60

DO 52 I=2,IL

FS(I,1,N) = FS(1,2,N)

FS(I,JL+1,N) = FS(LJL,N)

52 CONTINUE

DO 54 J=2,]L

DO 54 I=2,IL

DW(I,J,N) = FS(I,J+1,N) -2.*FS(L,J,N) +FS(L,J-1,N)
CONTINUE

DO 56 I=2,IL

DW(I,1,N) = 0.

CONTINUE

DO 58 J=1,JL

DO 58 I=2,IL

FS(L,J,N) = DIS2(1,J)*FS(L,J,N) -DIS4(1,J)*DW(LI,N)
CONTINUE

DO 60 J=2,]L

DO 60 I=2,IL

FW(L,1,N) = FW(I,J,N) -FS(LJ,N) +FS(1,J-1,N)
CONTINUE

STOP

END

I.4 EFLUX

SUBROUTINE EFLUX
PARAMETER(I12=194,J2=J2,]L=193,]L=33)
REAL DW(I2,J2,4)

REAL FS(IL,J2,4)

REAL W(I2,J2,4),P(12,]2),X(12,J2,2)

DO 10 J=2,JL
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10

20

25

DO 10 I=1,IL

XY = X(1,3,1) -X(1,J-1,1)

YY = X(1,3,2) -X(1,3-1,2)

PA = P(I+1,]) +P(,J)

QSP = (YY*W(I+1,],2) -XY*W(I+1,3,3))/W(I+1,3,1)
QSM = (YY*W(1,J,2) -XY*W(I,],3))/W(L,J,1)
FS(I,],1) = QSP*W(1+1,],1) +QSM*W(L,J,1)
FS(1,J,2) = QSP*W(I+1,1,2) +QSM*W(1,J,2) +YY*PA
FS(I,],3) = QSP*W(I1+1,1,3) +QSM*W(L,J,3) -XY*PA
FS(I,J,4) = QSP*(W(I1+1,],4) +P(I+1,3)) +QSM*(W(I,J,4) +P(L,J))
CONTINUE

DO 20 N=1,4

DO 20 J=2,JL

DO 20 I=2,IL

DW(I,J,N) = FS(L,J,N) -FS(I-1,J,N)

CONTINUE

DO 25 I=2,IL

XX = X(I,1,1) -X(I-1,1,1)

YX = X(1,1,2) -X(I-1,1,2)

PA = P(1,2) +P(1,1)

FS(1,1,1) = 0.

FS(1,1,2) = -YX*PA

FS(I,1,3) = XX*PA

FS(1,1,4) = 0.

CONTINUE

DO 30 J=2,JL

DO 30 I=2,IL

XX = X(1,J,1) -X(I-1,3,1)

YX = X(1,3,2) -X(I-1,3,2)

PA = P(1,J+1) +P(L,J)
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30

40

QSP = (XX*W(I,J+1,3) - YX*W(LI+1,2))/W(L,J+1,1)
QSM = (XX*W(I,1,3) -YX*W(1,3,2))/W(1,1,1)
FS(1,3,1) = QSP*W(L,J+1,1) +QSM*W(L,J,1)

FS(1,],2) = QSP*W(L,J+1,2) +QSM*W(1,],2) -YX*PA
FS(1,1,3) = QSP*W(I,J+1,3) +QSM*W(1,],3) +XX*PA
FS(LJ,4) = QSP*(W(I,J+1,4) +P(L,I+1)) +QSM*(W(1,J,4) +P(L]))
CONTINUE

DO 40 N=1,4

DO 40 J=2,JL

DO 40 1=2,IL

DW(1,],N) = DW(L,J,N) +FS(L,J,N) -FS(I,J-1,N)
CONTINUE

STOP

END
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